scholarly journals Energy Saving II. High Efficiency Gas Turbine Power Generation Systems Using Aero-Derivative Gas Turbines.

1997 ◽  
Vol 51 (11) ◽  
pp. 1634-1642
Author(s):  
Kouichi Chiba
Author(s):  
Mark A. Paisley ◽  
Donald Anson

The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet his goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.


1998 ◽  
Vol 120 (2) ◽  
pp. 284-288 ◽  
Author(s):  
M. A. Paisley ◽  
D. Anson

The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high-efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.


Author(s):  
Matti Malkamäki ◽  
Ahti Jaatinen-Värri ◽  
Antti Uusitalo ◽  
Aki Grönman ◽  
Juha Honkatukia ◽  
...  

Decentralized electricity and heat production is a rising trend in small-scale industry. There is a tendency towards more distributed power generation. The decentralized power generation is also pushed forward by the policymakers. Reciprocating engines and gas turbines have an essential role in the global decentralized energy markets and improvements in their electrical efficiency have a substantial impact from the environmental and economic viewpoints. This paper introduces an intercooled and recuperated three stage, three-shaft gas turbine concept in 850 kW electric output range. The gas turbine is optimized for a realistic combination of the turbomachinery efficiencies, the turbine inlet temperature, the compressor specific speeds, the recuperation rate and the pressure ratio. The new gas turbine design is a natural development of the earlier two-spool gas turbine construction and it competes with the efficiencies achieved both with similar size reciprocating engines and large industrial gas turbines used in heat and power generation all over the world and manufactured in large production series. This paper presents a small-scale gas turbine process, which has a simulated electrical efficiency of 48% as well as thermal efficiency of 51% and can compete with reciprocating engines in terms of electrical efficiency at nominal and partial load conditions.


Author(s):  
M. Sato ◽  
T. Abe ◽  
T. Ninomiya ◽  
T. Nakata ◽  
T. Yoshine ◽  
...  

From the view point of future coal utilization technology for the thermal power generation systems, the coal gasification combined cycle system has drawn special interest recently. In the coal gasification combined cycle power generation system, it is necessary to develop a high temperature gas turbine combustor using a low-BTU gas (LBG) which has high thermal efficiency and low emissions. In Japan a development program of the coal gasification combined cycle power generation system has started in 1985 by the national government and Japanese electric companies. In this program, 1300°C class gas turbines will be developed. If the fuel gas cleaning system is a hot type, the coal gaseous fuel to be supplied to gas turbines will contain ammonia. Ammonia will be converted to nitric oxides in the combustion process in gas turbines. Therefore, low fuel-NOx combustion technology will be one of the most important research subjects. This paper describes low fuel-NOx combustion technology for 1300°C class gas turbine combustors using coal gaseous low-BTU fuel as well as combustion characteristics and carbon monoxide emission characteristics. Combustion tests were conducted using a full-scale combustor used for the 150 MW gas turbine at the atmospheric pressure. Furthermore, high pressure combustion tests were conducted using a half-scale combustor used for the 1 50 MW gas turbine.


Author(s):  
A. J. Giramonti ◽  
F. L. Robson

Numerous attempts have been made during the past two decades to develop advanced power generation systems which could burn coal or coal-derived fuels both economically and in an environmentally acceptable manner. Although much valuable technology has been derived from these programs, commercially viable power generation alternatives have not yet appeared. One prospective way to expedite the commercialization of advanced coal-fired power systems is to meld the latest gas turbine technology with the emerging technology for producing slurries of water and ultra clean coal. This paper describes a DOE-sponsored program to identify the most attractive gas turbine power system that can operate on slurry fuels. The approach is to use slurries produced from finely ground (<10 microns) coal powder from which most of the ash and sulfur has been removed. The gas turbines will incorporate a rich-burn, quick-quench combustor to minimize conversion of fuel-bound nitrogen to NOx, advanced single crystal alloys with improved hot corrosion resistance and strength, advanced metallic and ceramic coatings with improved erosion and corrosion resistance, and more effective hot section cooling. Two different power plant configurations are covered: a large (nominally 400 MW) combined cycle plant designed for base load applications; and a small (nominally 12 MW) simple-cycle plant designed for peaking, industrial, and cogeneration applications.


Author(s):  
Roger W. Schonewald

The integration of a solid oxide fuel cell (SOFC) and a gas turbine is a marriage of two otherwise disparate power generation technologies with the potential for significant efficiency and emissions benefits. This requires consideration of the integrated system with unique impacts to the design of both components. Gas turbines for such systems will be different from today’s heavy-duty gas turbines and require a modified mind set in their design approach. This paper explores gas turbines that will be required for integrated SOFC gas turbine power generation systems, the resulting gas turbine cycle, technology flow-down from today’s gas turbines, and economic considerations.


Author(s):  
Emil Aschenbruck ◽  
Michele Cagna ◽  
Volker Langusch ◽  
Ulrich Orth ◽  
Andreas Spiegel ◽  
...  

MAN Diesel & Turbo recently developed a completely new gas turbine family for the first time in its history. The first product line contains both two-shaft and single-shaft gas turbines in the 6 – 7 MW class. The two-shaft engine was thoroughly tested at MAN’s gas turbine test center, and the first engine has been delivered to a launch customer. For MAN, it constitutes a technology platform that will produce further developments and new models in the coming years. The two-shaft design makes the new gas turbine an ideal mechanical drive for both turbo compressors and pumps. This gas turbine operates to suit the optimum duty point of the driven machine; both in a wide speed and power range. The two stage power turbine design allows for a wide speed range of 45 to 105% while maintaining high efficiency. For power generation a single-shaft version has been created by adding one additional stage to the two stage high pressure turbine. The compressor pressure ratio is 15, which is high enough for achieving the highest potential efficiency for both generator and compressor drive applications. Low pollutant emission levels are achieved with MAN’s DLN combustion technology. The gas turbine exhaust temperature is sufficiently high to reach high heat recovery rates in combined heat and power cycles. Another important feature of the new gas turbine is its unrestricted suitability for taking load quickly and rapid load changes. Service costs have also been significantly improved upon. MAN opted for a sturdy and modular gas turbine construction, while not compromising on efficiency. The objective is to extend service life and shorten down time occurrences. The modular package assembly process helps to reduce routine maintenance and repair time, and ultimately package downtime.


Author(s):  
Steven J. Bossart

The Morgantown Energy Technology Center (METC) of the U.S. Department of Energy (DOE) is actively sponsoring research to develop coal-based power generation systems that use coal more efficiently and economically and with lower emissions than conventional pulverized-coal power plants. Some of the more promising of the advanced coal-based power generation systems are shown in Figure 1: pressurized fluidized-bed combustion combined-cycle (PFBC), integrated gasification combined-cycle (IGCC), and direct coal-fueled turbine (DCFT). These systems rely on gas turbines to produce all or a portion of the electrical power generation. An essential feature of each of these systems is the control of particles at high-temperature and high-pressure (HTHP) conditions. Particle control is needed in all advanced power generation systems to meet environmental regulations and to protect the gas turbine and other major system components. Particles can play a significant role in damaging the gas turbine by erosion, deposition, and corrosion. Erosion is caused by the high-speed impaction of particles on the turbine blades. Particle deposition on the turbine blades can impede gas flow and block cooling air. Particle deposition also contributes to corrosive attack when alkali metal compounds adsorbed on the particles react with the gas turbine blades. Incorporation of HTHP particle control technologies into the advanced power generation systems can reduce gas turbine maintenance requirements, increase plant efficiency, reduce plant capital cost, lower the cost of electricity, reduce wastewater treatment requirements, and eliminate the need for post-turbine particle control to meet New Source Performance Standards (NSPS) for particle emissions.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Je-Chin Han

Gas turbines have been extensively used for aircraft engine propulsion, land-based power generation, and industrial applications. Power output and thermal efficiency of gas turbines increase with increasing turbine rotor inlet temperatures (RIT). Currently, advanced gas turbines operate at turbine RIT around 1700 °C far higher than the yielding point of the blade material temperature about 1200 °C. Therefore, turbine rotor blades need to be cooled by 3–5% of high-pressure compressor air around 700 °C. To design an efficient turbine blade cooling system, it is critical to have a thorough understanding of gas turbine heat transfer characteristics within complex three-dimensional (3D) unsteady high-turbulence flow conditions. Moreover, recent research trend focuses on aircraft gas turbines that operate at even higher RIT up to 2000 °C with a limited amount of cooling air, and land-based power generation gas turbines (including 300–400 MW combined cycles with 60% efficiency) burn alternative syngas fuels with higher heat load to turbine components. It is important to understand gas turbine heat transfer problems with efficient cooling strategies under new harsh working environments. Advanced cooling technology and durable thermal barrier coatings (TBCs) play most critical roles for development of new-generation high-efficiency gas turbines with near-zero emissions for safe and long-life operation. This paper reviews basic gas turbine heat transfer issues with advanced cooling technologies and documents important relevant papers for future research references.


Author(s):  
F. R. Biancardi ◽  
G. T. Peters

Increases in electric power demand during the next 30 years will sharply increase water requirements for condenser cooling and will stimulate the search for alternative solutions to the thermal pollution of our waters. Continuing engineering advances, achieved during extensive research and development efforts on military and commercial gas-turbine applications, could provide the basis for substantially improved power plants that could significantly alleviate thermal pollution. The authors describe the results of analytical studies to estimate the design technology, performance, and cost characteristics of future fossil- and nuclear-fueled gas-turbine power generation systems and the potential for eliminating thermal pollution.


Sign in / Sign up

Export Citation Format

Share Document