scholarly journals Effect which the Particle Size of Ground Calcium Carbonate Exerts on Color Rheology and Coated Paper Property

1999 ◽  
Vol 53 (9) ◽  
pp. 1174-1178,053
Author(s):  
Yasushi Umeda ◽  
Shigeo Watabe ◽  
Yumiko Takase ◽  
Seiji Katayama
2014 ◽  
Vol 997 ◽  
pp. 542-545
Author(s):  
Yan Ru Chen ◽  
Yi Chen Lu ◽  
Xiao Min Lian ◽  
Chao Yang Li ◽  
Shui Lin Zheng

Superfine ground calcium carbonate (GCC) produced by carbonate minerals is a widely used inorganic powder material. In order to get a finer GCC powder with narrow distribution span, the effect of rotational speed and media density on ground GCC were studied by dry grinding GCC in a planetary ball mill under different rotational speed and various media density. The grinding limit-particle size and distribution of grinding calcium carbonate were measured by centrifugal sedimentation granulometer. The structure of GCC was measured by X-ray diffraction. The result shows that low rotational speed and high-density media is conducive to get a product with smaller particle size and narrow size distribution; crystal plane (012) and (122) are more stable than (018) and (116).


2012 ◽  
Vol 730-732 ◽  
pp. 209-214
Author(s):  
J. Velho ◽  
N.F. Santos

The main goal of this research is to apply AFM to the analysis of coated paper topography in order to find out relationships between sheet gloss and some parameters obtained from AFM, such as roughness and fractal dimension (D). Flooding technique was also developed using appropriated software. Number of hills/flooding volume for 25%, 50% and 75% flooded volume was applied in this research. Ground calcium carbonate and precipitated calcium carbonate were applied in coating colour formulations, alone and blended in three formulations, 75:25, 50:50 and 25:75. The results obtained showed high correlations between sheet gloss with fractal dimension (D) parameter. Finally, flooding technique showed to be very interesting, all of them gave useful information in interpreting the influence of topography on sheet gloss.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (6) ◽  
pp. 51-58
Author(s):  
PETER DAHLVIK ◽  
GUILLERMO BLUVOL ◽  
KARL-HEINZ KAGERER ◽  
MANFRED ARNOLD ◽  
DAN VARNEY

This paper describes ground calcium carbonate pigment particle size distribution and its influence on the tail-edge picking of pilot-coated paper as determined in full-scale sheet-fed offset printing. A tailor-made method was developed using a modified printing plate and high-tack inks to assess surface strength in terms of edge picking. In addition to the type, fineness, and particle size distribution of the ground calcium carbonate pigment, we also evaluated the solids content of the coating color, binder level, clay usage, and calendering. The printing test method provided differentiation relative to the investigated parameters, and it was possible to correlate these results with laboratory test data on ink-coating interaction and mercury intrusion porosimetry. Maximizing the solids content of the formulation to some extent compensated for the loss of pick resistance that followed binder reduction. Other laboratory tests showed poor correlation with the observed degree of edge picking.


2011 ◽  
Vol 415-417 ◽  
pp. 237-242
Author(s):  
Zhou Da Zhang ◽  
Xue Mei Chen ◽  
Guo Liang Qu

Calcium carbonate nanoparticles (nano-CaCO3) filled powdered styrene-butadiene rubber (P(SBR/CaCO3) was prepared by adding nano-CaCO3 particles, encapsulant and coagulant to styrene-butadiene rubber (SBR) latex by coacervation, and the particle size distribution, structure were studied. Scanning electron microscopy (SEM) was used to investigate the (P(SBR/CaCO3) particle structure, and a powdering model was proposed to describe the powdering process. The process includes: (i) the latex particles associated with the dispersed nano-CaCO3 particles (adsorption process) to form “new particles” and (ii) the formation of P(SBR/CaCO3) by coagulating “new particles”. The SEM results also shown that the nano-CaCO3 and rubber matrix have formed a macroscopic homogenization in the (P(SBR/CaCO3) particles and nano-CaCO3 dispersed uniformly in the rubber matrix with an average diameter of approximately 50 nm.


Revista CERES ◽  
2014 ◽  
Vol 61 (3) ◽  
pp. 406-413 ◽  
Author(s):  
Angélica Cristina Fernandes Deus ◽  
Leonardo Theodoro Bull ◽  
Juliano Corulli Corrêa ◽  
Roberto Lyra Villas Boas

Studies on the use of silicate correctives in agriculture show that they have great potential to improve soil chemical characteristics, however, little information is available on the reactivity rates of their particle-size fractions. This study investigated whether the reactivity rates obtained experimentally could be considered in the calculation of ECC (effective calcium carbonate) for soil liming, promoting adequate development of alfalfa plants. Six treatments were evaluated in the experiment, consisting of two slag types applied in two rates. The experimental ECC was used to calculate one of the rates and the ECC determined in the laboratory was used to calculate the other. Rates of limestone and wollastonite were based on the ECC determined in laboratory. The rates of each soil acidity corretive were calculated to increase the base saturation to 80%. The treatments were applied to a Rhodic Hapludox and an Alfisol Ferrudalfs. The methods for ECC determination established for lime can be applied to steel slag. The application of slag corrected soil acidity with consequent accumulation of Ca, P, and Si in alfalfa, favoring DM production.


Author(s):  
Klaus Dölle ◽  
Kilian F. Baumgartner ◽  
Neil F. Goodman ◽  
Alexander Klitsiotisoris

The main objective of this paper handsheet study is to investigate if a hybrid filler material containing wood flour and precipitated calcium carbonate can replace and/or supplement commercially available ground calcium carbonate and precipitated calcium carbonate mineral filler material for papermaking. The handsheet study contains 25 different furnish mixtures. Four different types of wood flour were used to manufacture the hybrid filler material, including two wood flour blends with a strengthening agent. All handsheet were manufactured with an 80% harwood and 20% softwood mix. The filler content varied between 10, 15 and 20%. The study showed that the hybrid filler material achieved a retention of up to 92.68% as well as a higher caliper of up to 208 μm compared to commercial ground and precipitated calcium carbonate of 120.4 μm and 145.6 μm respectively. Tensile and tear strength did not show an improvement. Elongation and tensile energy absorption did improve of up to 30% with the strength additive containing hybrid filler material. Opacity was improved of up to 10% with the hybrid filler material. Brightness and color values were lower due to the natural brow color of the wood flower material.


2010 ◽  
Vol 654-656 ◽  
pp. 2923-2926 ◽  
Author(s):  
Seiji Yokoyama ◽  
Nik Hisyamudin Muhd Nor ◽  
Shunsuke Hirano

Commercial sedimentation CaCO3 was ground by a vibration rod mill to investigate the physicochemical properties of mechanically activated CaCO3.When the CaCO3of the calcite structure was ground, the intensities of the crystal facesof calcite was decreased by distortions and so on, and the aragonite appeared as the grinding proceeded. The formed aragonite was transformed to the calcite when the sample was heated at 773K for3.6 ks. The dissociation pressure of CO2 of the ground CaCO3was larger than that of the non-ground CaCO3.The enthalpy; entropy and specific heat of change of the dissociation reaction were obtained. At high temperature, the emission rate of the ground CaCO3 was slightly larger than that of the non-ground CaCO3. At room temerature, the CaCO3 adsorbs CO2, and it desorbs the adsorbed CO2. The amount of adsorbed CO2 on the ground CaCO3 was larger than that of the non-ground CaCO3.


Sign in / Sign up

Export Citation Format

Share Document