scholarly journals Nutrient accumulation and biomass production of alfafa after soil amendment with silicates

Revista CERES ◽  
2014 ◽  
Vol 61 (3) ◽  
pp. 406-413 ◽  
Author(s):  
Angélica Cristina Fernandes Deus ◽  
Leonardo Theodoro Bull ◽  
Juliano Corulli Corrêa ◽  
Roberto Lyra Villas Boas

Studies on the use of silicate correctives in agriculture show that they have great potential to improve soil chemical characteristics, however, little information is available on the reactivity rates of their particle-size fractions. This study investigated whether the reactivity rates obtained experimentally could be considered in the calculation of ECC (effective calcium carbonate) for soil liming, promoting adequate development of alfalfa plants. Six treatments were evaluated in the experiment, consisting of two slag types applied in two rates. The experimental ECC was used to calculate one of the rates and the ECC determined in the laboratory was used to calculate the other. Rates of limestone and wollastonite were based on the ECC determined in laboratory. The rates of each soil acidity corretive were calculated to increase the base saturation to 80%. The treatments were applied to a Rhodic Hapludox and an Alfisol Ferrudalfs. The methods for ECC determination established for lime can be applied to steel slag. The application of slag corrected soil acidity with consequent accumulation of Ca, P, and Si in alfalfa, favoring DM production.

2014 ◽  
Vol 38 (3) ◽  
pp. 934-941 ◽  
Author(s):  
Gláucia Oliveira Islabão ◽  
Ledemar Carlos Vahl ◽  
Luís Carlos Timm ◽  
Donald Luiz Paul ◽  
Aline Hernandez Kath

Rice husk ash (RHA) is a by-product from the burning of rice husk that can have favorable effects on the soil in terms of acidity correction. The objectives of this study were to determine the effective calcium carbonate equivalent (ECC) of RHA under field conditions, and establish technical criteria as a basis for estimating the overall ECC of RHA. The 12 treatments of the experiment consisted of 10 RHA dosages (0, 10, 20, 30, 40, 60, 80, 100, 120, and 140 Mg ha-1) and two references, one of which was an absolute control (AC) and the other a plot limed and fertilized according to official recommendations (recommended fertilization - RF). The soil was sampled twice (15 and 210 days after incorporating RHA), in the layers 0.00-0.10 and 0.10-0.20 m, to determine the pH(H2O) and base saturation (V%). The ECC and neutralizing value (NV) of RHA were also determined. The results showed that RHA neutralizes soil acidity, in a faster reaction than conventional limestone, despite a low ECC (around 3 %).


Revista CERES ◽  
2016 ◽  
Vol 63 (6) ◽  
pp. 879-886
Author(s):  
Luiz Carlos Santos Caetano ◽  
Luiz Carlos Prezotti ◽  
Bevaldo Martins Pacheco ◽  
Rogério Carvalho Guarçoni

ABSTRACT Steel slag presents potential for neutralizing the soil acidity instead of limestone and for supplying nutrients for plants. The objective of this work was to study the effect of steel slag on soil chemical characteristics, biomass production, and contents of nutrients and of heavy metals on dry matter of corn plants. The levels of P, K, Na, Ca, Mg, Cu, Fe, Zn, Mn, Si, Cd, Cr, Pb, and Ni were determined in steel slag and limestone (for comparison purposes) and the growth of corn plants under increasing doses of slag and limestone (0 to 10 t ha-1) was evaluated. Steel slag presented higher levels of P, Fe, Zn, Mn, and Si when compared with limestone. No difference was found in the content of heavy metals of slag and limestone, except for Cr, which was higher in the slag. Limestone provided the greatest increase of soil pH over time. Slag increased the content of P, Si, and soil micronutrient, while limestone was more efficient in increasing the content of Mg. The levels of heavy metals in the soil increased with the application of slag, but they remained below critical level within agricultural parameters. Slag and limestone presented a similar effect on the increase of the initial production of corn biomass. The levels of heavy metals in dry matter of corn plants under increasing doses of slag and limestone were below the critical levels of the toxicity of these elements on most plants.


2020 ◽  
Vol 71 (4) ◽  
pp. 368 ◽  
Author(s):  
M. K. Conyers ◽  
B. J. Scott ◽  
M. G. Whitten

Grain yield is frequently constrained by soil acidity in southern Australia yet limestone crushing plants are few and distant, making the use of limestone costly. The efficient technology of agricultural liming is therefore critical to the continuation of the practice following its adoption during the 1980s. We hypothesise that finer particles are the most effective materials for ameliorating soil acidity even over the longer term, when the residual value of coarser particles might be expected to be greater. Finer particle sizes of limestone, particularly <0.075 mm, initially gave the largest increases in soil pH per tonne of limestone applied. Despite the rapid and large increase in soil pH with finer particles, there was no less residual value in surface soil pH after 7 years or in grain yield in the 7th and 8th growing seasons compared with coarser particles. Most particle size fractions of limestone converged to a similar soil pHca at 0–10 cm depth after about 6 years but the coarsest particle size fraction (2–5 mm) lagged the other five. Finer particles also resulted in better movement of alkali and Ca into the subsurface soil layers below the depth of incorporation (0–10 cm). The measurement of unreacted limestone in the soil showed that the dissolution of limestone took up to 3 years (1807 mm of rainfall) for the 2.5 t/ha rate and up to 6 years (3592 mm) for the 5 t/ha rate. The rapid increase in soil pH in Year 1, the slow ongoing reaction of limestone over 3–6 years as measured by unreacted limestone, the slow but measurable improvement in subsurface acidity, and the sustained residual value to grain yield over in excess of eight seasons, indicate that the use of finer liming materials should remain a viable practice for growers.


Clay Minerals ◽  
2012 ◽  
Vol 47 (4) ◽  
pp. 539-557 ◽  
Author(s):  
N. Worasith ◽  
B. A. Goodman

AbstractElectron paramagnetic resonance (EPR) spectra of different particle size fractions of four kaolins from diverse sources in North America, Europe and Asia have been investigated in order to characterize their paramagnetic properties and heterogeneity. There were major differences in the sources of the EPR signals from transition metals; V and Mn were structural, Fe was both structural and as associated oxides, and Cu was in the form of an adsorbed ion. The radiation-induced free radical signals commonly known as the A- and B-centres were observed in three of the deposits; however, in addition to the previously reported 27Al hyperfine structure associated with the B-centre, we also observed much smaller 27Al hyperfine structure on the g┴ feature of the A-centre. The other kaolin sample produced four free radical signals that have not previously been reported in kaolins. Each had substantial 1H hyperfine splitting; three are interpreted as corresponding to defect centres associated with Si-OH groups, and the other to a Si hole surrounded by protonated O atoms. The EPR spectra changed progressively with particle size, and measurements on the Asian specimens after grinding showed major differences in the Fe3+ signals from the same particle size fractions separated from the natural samples, thus supporting previous reports that grinding results in major structural changes in the minerals.


2018 ◽  
Vol 9 (2) ◽  
pp. 175-184 ◽  
Author(s):  
Rafael Felipe Ratke ◽  
Hamilton Seron Pereira ◽  
João de Deus Gomes dos Santos_Júnior ◽  
Juliano Magalhães Barbosa ◽  
Liliane Oliveira Lopes

The aim of this study was to evaluate the soil acidity correction and the grain yield responses for the lime application in different granulometric particles. The limestone particle sizes incorporated into the distroferric red Oxisol were: 0.20 mm to 0.30 mm; 0.30 mm to 0.56 mm; 0.56 mm to 0.82 mm and 0.82 mm to 2.00 mm, at doses of 1.3 t ha-1; 2.6 t ha-1; 3.9 t ha-1 and 6.6 t ha-1 respectively, and a control respectively, and a control (no lime incorporation in the soil). The soil chemical characteristics pH, H+Al3+, Al3+, Ca2+ e Mg2+ were evaluated at 6 months and 18 months after the lime application. The corn yields were evaluated during the 2008/2009 and 2009/2010 crop years. Higher limestone contents and lower particle size resulted in the same effect on soil acidity correction, reducing Al3+ and increasing Ca2+ and Mg2+ in the soil when the 0.30 mm limestone was incorporated, with residual effect at 18 months. Highest corn yield was obtained when the 0.82 mm to 2.00 mm particle size was incorporated in the first crop year, when compared to the lowest limestone particle size used.


Revista CERES ◽  
2014 ◽  
Vol 61 (2) ◽  
pp. 265-272 ◽  
Author(s):  
Angélica Cristina Fernandes Deus ◽  
Leonardo Theodoro Büll ◽  
Juliano Corulli Corrêa ◽  
Roberto Lyra Villas Boas

The efficiency of sources used for soil acidity correction depends on reactivity rate (RR) and neutralization power (NP), indicated by effective calcium carbonate (ECC). Few studies establish relative efficiency of reactivity (RER) for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves), and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides) was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.


2020 ◽  
Vol 12 (5) ◽  
pp. 760-768 ◽  
Author(s):  
Haihe Yi ◽  
Chun-Xiang Qian

Bacteria-induced mineralization is a new technique to produce calcium carbonate in steel slag for the preparation of building materials. Calcium carbonate nanoparticles were precipitated as a result of the enzymatic activity of Bacillus mucilaginous subtilis in steel slag. The crystal structure and morphology of the calcium carbonate precipitate were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), atomic force microscopy (AFM), while thermal properties were studied by thermogravimetric-differential scanning calorimetry (TG-DSC) analysis. The experimental results showed that the microstructure of calcium carbonate precipitate induced by the reproductive enzymes of Bacillus mucilaginous differs from the chemical precipitation in simulated pore solution of steel slag. Powder XRD patterns confirmed the formation of Bacillus mucilaginous subtilis-induced calcium carbonate with an average particle size of 42.1 nm, while the average particle size of the chemically synthesized calcium carbonate was 59.3 nm. Compared with the chemical synthesis, we found that the decomposition temperature of calcite by bacterial precipitation was higher than that for the chemically-precipitated calcite. The compressive strength improved with the amount of bacterial content. Bacterial mineralization could accelerate the rate of carbon sequestration in the mineralization process. The content of calcium carbonate in microbial mineralized steel slag increased obviously. The compressive strength of steel slag mortar with 1.5% bacterial reached up to 51.5 MPa, the compressive strength increased over 50% compared with the carbonized steel slag mortar. The micron-size calcite by bacterial mineralization resulted in a more compact structure. Our study suggests that microbial mineralization technology is a good method to utilize steel slag for building materials.


2013 ◽  
Vol 14 (3) ◽  
Author(s):  
Eriawan Rismana ◽  
Susi Kusumaningrum ◽  
Olivia Bunga P ◽  
Idah Rosidah ◽  
Marhamah Marhamah

The chitosan – Garcinia Mangostana extract nanoparticles has been prepared by ionic gelation reaction by mixture 0.2 % chitosan solution in acetic acid with Garcinia Mangostana extract and it’s continued by reaction process with 0.1 % sodium tripolyphosphate. The particle size of material was determined by Particle Size Analyzer (PSA) that it showed in the range of 200 – 500 nm. The color, pH, water, α- mangostin, mercury, arsenic, cadmium, lead, totally microbe aerobic, totally mold and yeast, and solvent residue contents of nanoparticles were also examined by many methods that these resulted are yellow, 4.50 – 5.50, 89 – 90 %, 1.05 %, < 0.005 ppm, < 0.01 ppm, < 0.01 ppm, < 0.05 ppm, < 10 CFU/g, < 10 CFU/g and not detected, respectively. The other characterization was also observed that it’sincluded stability andTLC chromatogram. A mixture of nanoparticles with cosmetics bases was showed that it’s increased stability, homogeneity and easy to formed.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 869
Author(s):  
Minghua Wei ◽  
Shaopeng Wu ◽  
Haiqin Xu ◽  
Hechuan Li ◽  
Chao Yang

Steel slag is the by-product of the steelmaking industry, the negative influences of which prompt more investigation into the recycling methods of steel slag. The purpose of this study is to characterize steel slag filler and study its feasibility of replacing limestone filler in asphalt concrete by evaluating the resistance of asphalt mastic under various aging methods. Firstly, steel slag filler, limestone filler, virgin asphalt, steel slag filler asphalt mastic and limestone filler asphalt mastic were prepared. Subsequently, particle size distribution, surface characterization and pore characterization of the fillers were evaluated. Finally, rheological property, self-healing property and chemical functional groups of the asphalt mastics with various aging methods were tested via dynamic shear rheometer and Fourier transform infrared spectrometer. The results show that there are similar particle size distributions, however, different surface characterization and pore characterization in the fillers. The analysis to asphalt mastics demonstrates how the addition of steel slag filler contributes to the resistance of asphalt mastic under the environment of acid and alkaline but is harmful under UV radiation especially. In addition, the pore structure in steel slag filler should be a potential explanation for the changing resistance of the asphalt mastics. In conclusion, steel slag filler is suggested to replace limestone filler under the environment of acid and alkaline, and environmental factor should be taken into consideration when steel slag filler is applied to replace natural fillers in asphalt mastic.


Sign in / Sign up

Export Citation Format

Share Document