scholarly journals The effect of physiotherapy specific exercises on the treatment of adolescent idiopathic scoliosis

2021 ◽  
Author(s):  
Andrea Medeiros De Brito Sá ◽  
Ana Luiza de Araujo Rodrigues ◽  
Ana Luiza França Crispim ◽  
Carlos Eduardo dos Santos Júnior ◽  
Patrícia Junqueira Ferraz Baracat

Adolescent idiopathic scoliosis (AIS), characterized by three-dimensional deviations of the spine, has an unknown etiology. It affects 2 to 4% of healthy children, mainly in the growth spurt phase, and has negative impacts on the perception of self-image, self-esteem and, later, on the quality of life and functionality of their carriers. Conservative treatment of structural changes in the spine includes specific exercises for scoliosis (PSSE), combined or not with the use of rigid orthosis, to prevent or reduce curve progression. The aim of this study was to review the most evidence-based and effective exercise protocols and methods for the treatment of adolescent idiopathic scoliosis. Only randomized and controlled clinical trials from Pubmed, Lilacs, Cochrane Library and PEDro (Physiotherapy Evidence Database) databases and published in English between 2015 and 2020 were included. The keywords used in the search were adolescent idiopathic scoliosis, spine, posture, physiotherapy, postural deviation, specific exercises for scoliosis and postural diagnosis. Eight randomized clinical trials were selected. The number of participants was three hundred and forty-five and their outcomes varied between Cobb angle, Global Rating of Change (GRC), SRS-22r questionnaire, aesthetic perception, and vertebral rotation angle. It is concluded that although more studies on the subject are still needed, a three-dimensional approach through exercises proved to be effective in the treatment of adolescent idiopathic scoliosis.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Dmitry Yu Pinchuk ◽  
Sergey S. Bekshaev ◽  
Svetlana A. Bumakova ◽  
Mikhail G. Dudin ◽  
Olga D. Pinchuk

The purpose of this work is to identify a role of the pineal gland/suprachiasmatic nucleus system in adolescent idiopathic scoliosis (AIS) aetiology and pathogenesis. To analyze electroencephalograms of 292 children with AIS and in 46 healthy subjects, a processing method was used to assess three-dimensional coordinates of electric equivalent dipole sources (EEDSs) within the brain. Amounts of EEDSs in the pineal gland and suprachiasmatic nucleus (SCN) area were assessed in different age groups and during the progress of orthopaedic pathology. It was shown that children with AIS, compared with healthy children, were characterized by a higher level of electric activity (as judged by EEDS values) in the pineal gland area. It was also revealed that the number of EEDS in the pineal gland area increases significantly with increased severity of spinal deformation, while their number in the suprachiasmatic nucleus (SCN) area decreases compared with the number in healthy peers. Changes in electric activity and changes in the pineal gland and SCN area suggest that mechanisms of AIS aetiology and pathogenesis involve functional disturbances in brain areas responsible for the formation and maintenance of normal biorhythms, including osteogenesis and bone growth.


Author(s):  
Tom P. C. Schlösser ◽  
René M. Castelein ◽  
Pierre Grobost ◽  
Suken A. Shah ◽  
Kariman Abelin-Genevois

Abstract Purpose The complex three-dimensional spinal deformity in AIS consists of rotated, lordotic apical areas and neutral junctional zones that modify the spine’s sagittal profile. Recently, three specific patterns of thoracic sagittal ‘malalignment’ were described for severe AIS. The aim of this study is to define whether specific patterns of pathological sagittal alignment are already present in mild AIS. Methods Lateral spinal radiographs of 192 mild (10°–20°) and 253 severe (> 45°) AIS patients and 156 controls were derived from an international consortium. Kyphosis characteristics (T4–T12 thoracic kyphosis, T10–L2 angle, C7 slope, location of the apex of kyphosis and of the inflection point) and sagittal curve types according to Abelin-Genevois were systematically compared between the three cohorts. Results Even in mild thoracic AIS, already 49% of the curves presented sagittal malalignment, mostly thoracic hypokyphosis, whereas only 13% of the (thoraco) lumbar curves and 6% of the nonscoliosis adolescents were hypokyphotic. In severe AIS, 63% had a sagittal malalignment. Hypokyphosis + thoracolumbar kyphosis occurred more frequently in high-PI and primary lumbar curves, whereas cervicothoracic kyphosis occurred more in double thoracic curves. Conclusions Pathological sagittal patterns are often already present in curves 10°–20°, whereas those are rare in non-scoliotic adolescents. This suggests that sagittal ‘malalignment’ patterns are an integral part of the early pathogenesis of AIS.


2017 ◽  
Vol 16 (4) ◽  
pp. 302-307
Author(s):  
Tom Schlösser ◽  
Rob Brink ◽  
René Castelein

ABSTRACT Despite many years of dedicated research into the etiopathogenesis of adolescent idiopathic scoliosis, there is still no single distinct cause for this puzzling condition. In this overview, we attempt to link knowledge on the complex three-dimensional pathoanatomy of AIS, based on our ongoing research in this field, with etiopathogenic questions. Evidence from multiple recent cross-sectional imaging studies is provided that supports the hypothesis that AIS has an intrinsic biomechanical basis: an imbalance between the biomechanical loading of the upright human spine due to its unique sagittal configuration on the one hand, and the body’s compensating mechanisms on the other. The question that remains in the etiology of AIS, and the focus of our ongoing research, is to determine what causes or induces this imbalance.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Máté Burkus ◽  
Ádám T. Schlégl ◽  
Kristóf József ◽  
Ian O’Sullivan ◽  
István Márkus ◽  
...  

Background. Assessment of the proximal femoral parameters in adolescent idiopathic scoliosis using three-dimensional radiological image reconstructions may allow better characterization than conventional techniques. Methods. EOS 3D reconstructions of spines and femurs of 320 scoliotic patients (10-18 years old) and 350 control children lacking spinal abnormality were performed and 6 proximal femoral parameters measured. Results. Individuals with adolescent idiopathic scoliosis showed a small but statistically significant decrease in neck shaft angle (average difference=2.58°) and a higher (0.22°) femoral mechanical axis–femoral shaft angle. When the two sides were compared based on curve direction, greater changes in the neck shaft angle and femoral mechanical axis–femoral shaft angle were found on the side of the convexity. Conclusions. Patients with adolescent idiopathic scoliosis were found to have a small but significantly lower neck shaft angle and higher femoral mechanical axis–femoral shaft angle, which related to the curve direction. This is postulated to be due to mechanical compensation for altered balance and centre of gravity associated with a scoliosis deformity, although the observed difference likely has negligible clinical effect.


2019 ◽  
Vol 21 (4) ◽  
pp. 253-260
Author(s):  
Radoslav Zamborský ◽  
Boris Liščák ◽  
Martin Trepáč ◽  
Andrey Švec ◽  
Ľuboš Danisovič

Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformity of the spine mainly affecting the younger population. Earlier detection of the disorder leads to appropriate treatment and better outcomes, thus avoiding highly invasive surgical treatments. The currently available tests for the disease identification have lost their reliability and validity with time. In the past few decades, efforts have been directed towards developing a highly reliable prognostic test for AIS. Towards this end, several strategies have been employed including biochemical, biomechanical and gene-based tests. Among the three, the gene-based technology has received much attention in recent past. Notably, this is due to the fact that the human genome project, followed by genome-wide association studies (GWAS), facilitated the identification of candidate genes for disorders like AIS. Several promising biomarker genes have been identified. However, their global validations were disappointing as these genes were shown to be limited to a particular group of people/ethnicities. Such observations limit the development of a reliable global molecular/biochemical test for AIS. The currently used AIS ScoliScoreTM also has several limitations. With continued disappointments in the identification of biomarkers for AIS and lack of appropriate tests, researchers have diverted their efforts towards several alternative avenues. A ray of hope is emerging from recent observations on the association of non-coding microRNAs and epigenetic factors that might arise as future reliable markers for AIS, thus paving the way for appropriate clinical management of this disorder.


Sign in / Sign up

Export Citation Format

Share Document