scholarly journals Study of the Efficiency of Trachyspermum ammi L. Essential Oil for its Application in Active Food Packaging Technology

Author(s):  
Rency Elizabeth ◽  
Akshay Shah

The interest in essential oils and their application in food packaging and preservation has been amplified in recent years by an increasingly negative consumer perception of synthetic preservatives Close to one third of the world's food supply is wasted annually. As a major contributor, food spoilage represents an environmental problem as well as an ethical issue. Besides physical damage, browning and staling, molds and yeasts cause significant food waste. Protecting foods from spoilage is essential in order to reduce food waste and ensure safety for consumers. However the current methods employed for preservation carry serious drawbacks which have implications on the health and well being of the consumer. There is a strong need to replace synthetic methods with the use of botanicals. The food industries are developing new packaging systems (active packaging) through the incorporation of essential oils. Essential oils are naturally occurring, degradable, and cheaper than chemical preservatives. Ajwain is a commonly used spice and has been used as a traditional medicine in Indian culture. The current study identifies the fungi toxic potential of essential oil of Ajwain (T. ammi) against common food spoilage fungi and its application as a natural preservative and a prospective component of active packaging and micro atmosphere preservation systems. Using bread, a commodity commonly susceptible to fungal contamination in a modelling system aids in understanding the large scale and realistic application of the system developed. Further studies need to be carried out on the synergistic action of essential oil of T. ammi with other essential oils and other hurdle techniques. The organoleptic and sensory changes caused due to its strong aroma need to be tested further.

Author(s):  
Emine Arman Kandirmaz ◽  
◽  
Omer Bunyamin Zelzele ◽  

The use of edible biofilms in food packaging reduces the use of petrochemical polymers that are harmful to human health, such as PE, PP, PET. The second most common biopolymer in nature, chitosan is a nontoxic, nonantigenic, biocompatible and biodegradable polymer. Considering these features, it is frequently used in food packaging applications. Increasing needs for food amount and quality canalized food ındustry to fund in new packaging techniques that improve storage life and grade of foods. Active packaging systems, one of these methods, can be designed as a sensor, antimicrobial or antimigrant in order to extend the shelf life of the food product and to inform the shelf life in possible degradation. Essential oils, which are antimicrobial environmentally friendly packaging material additives, are used due to their effective biological activities. Essential oils that have known antimicrobial properties include lavender, rosemary, mint, eucalyptus and geranium. These oils are also edible. In this study, it is aimed to produce antimicrobial, ecofriendly, edible, printable biofilm for active packaging, using chitosan and peppermint essential oil. For this purpose, chitosan biofilms containing different rates (0, 1, 2.5, 5, 10%) of peppermint essential oil were produced by solvent casting method. Surface morphology were examined by SEM. The transparency of biofilms was determined by UV spectroscopy. Antimicrobial properties of the obtained films were determined against S. aureus and E. coli. Biofilms were printed with screen printing. The color, gloss, contact angle, surface tension values of all printed and unprinted samples were examined. As a result, chitosan biofilms which are loaded with peppermint essential oil were successfully produced. Biofilms are colorless, highly transparent and have good printability. It is concluded that the amount of peppermint essential oil increased inhibitory feature against S. aureus and E. coli. When the obtained results are examined, it is determined that the printable, ecofriendly, edible biofilms can be used in active food packaging applications.


Author(s):  
Olga B. Alvarez-Pérez ◽  
Mónica L. Chávez-González ◽  
Anna Iliná ◽  
José Luis Martínez-Hernández ◽  
Elda Patricia Segura-Ceniceros ◽  
...  

Author(s):  
Muhammad Zeeshan Akram ◽  
Sema Yaman Fırıncıoğlu ◽  
Hassan Jalal ◽  
Sibel Canoğulları Doğan

Public concern on the excessive use of synthetic food additives has raised a great interest to use natural products due to their potential in food and pharmacological industries. Nowadays, chemical food additives are questioned due to their contribution to the health risks and environmental impacts. Among natural additives, essential oils (EOs) are extracted from aromatic compounds and responsible for their biological activities namely antimicrobial and antioxidant capacity. Incorporation of bio-active compounds particularly EOs directly in food or edible/biodegradable food packaging seems to enhance the shelf life and quality characteristics of processed food and protect the consumers against oxidative and bacterial deterioration effects. However, inclusion of EOs in films/coatings for food packaging may put some effects on various properties (optic, tensile and etc.), which can affect the consumer acceptability. Their addition in food can cause some allergic and hypersensitivity reactions to the individuals who use them often. This paper aims to review the latest findings on the use of EOs incorporated with edible/biodegradable films and coatings to enhance the shelf life and quality of the food. Further investigations about essential oils are expected to clarify their exact action and build up their standard use in food industry.


Food Control ◽  
2016 ◽  
Vol 59 ◽  
pp. 366-376 ◽  
Author(s):  
Peng Wen ◽  
Ding-He Zhu ◽  
Hong Wu ◽  
Min-Hua Zong ◽  
Yi-Ru Jing ◽  
...  

2021 ◽  
Author(s):  
Josemar Gonçalves de Oliveira Filho ◽  
Beatriz Regina Albiero ◽  
Lavínia Cipriano ◽  
Carmen Cris de Oliveira Nobre Bezerra ◽  
Fernanda Campos Alencar Oldoni ◽  
...  

Abstract Arrowroot starch (AA)-based films incorporated with a carnauba wax nanoemulsion (CWN), cellulose nanocrystals (CNCs), and essential oils (EOs) from Mentha spicata (MEO) and Cymbopogon martinii (CEO) were produced using the casting technique and then characterized in terms of their water barrier, tensile, thermal, optical, and microstructural properties and in vitro antifungal activity against Rhizopus stolonifer and Botrytis cinerea. Whereas the incorporation of CNCs decreased the moisture content and water vapor permeability of the AA/CWN/CNC film, the additional incorporation of either EO decreased the transparency and affected the microstructure of the AA/CWN/CNC/EO nanocomposites. MEO and CEO incorporation improved the thermal stability of the films and provided excellent protection against fruit-spoiling fungi. Because of their excellent barrier properties against fungal growth, water vapor permeability, and ultraviolet and visible light, these AA/CWN/CNC/EO films have promising potential for application as active food packaging or coating materials.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 557f-557
Author(s):  
Mohammed Sarwar ◽  
Saleh A. Al-Namlah

Saudi Arabia is known for arid character and its total unsuitability for any agricultural exploitation. However; it is- now proving otherwise with the application of modern agrotechnology resulting in large scale production of many crops successfully. Considering the international growing demand of essential oils, need of agrocommunities for new crops, advantages of local warm climate and availability of generous government funding system, essential oil production offers immense potential in Saudi Arabia. This paper intends to describe the prospects of raising Pelargonium graveolens, Mentha arvensis, Artemesia pallens, Cymbopogon winterianus, Cymbopogon flexuosus, Ocimum basilicum, Eucalyptus citriodora, Rosemarinus officinalis, Coriandrum sativum, Anethum graveolens, Jasminum grandiflorum and Pogostemon patchouli successfully at various ecosystems and to establish new agroindustries based on essential oils around the Kingdom.


2020 ◽  
Vol 21 (3) ◽  
pp. 698 ◽  
Author(s):  
Karolina Kraśniewska ◽  
Sabina Galus ◽  
Małgorzata Gniewosz

Packaging is an integral part of food products, allowing the preservation of their quality. It plays an important role, protecting the packed product from external conditions, maintaining food quality, and improving properties of the packaged food during storage. Nevertheless, commonly used packaging based on synthetic non-biodegradable polymers causes serious environmental pollution. Consequently, numerous recent studies have focused on the development of biodegradable packaging materials based on biopolymers. In addition, biopolymers may be classified as active packaging materials, since they have the ability to carry different active substances. This review presents the latest updates on the use of silver nanoparticles in packaging materials based on biopolymers. Silver nanoparticles have become an interesting component of biodegradable biopolymers, mainly due to their antimicrobial properties that allow the development of active food packaging materials to prolong the shelf life of food products. Furthermore, incorporation of silver nanoparticles into biopolymers may lead to the development of materials with improved physical-mechanical properties.


2020 ◽  
Vol 26 ◽  
pp. 100602
Author(s):  
Renata C. da Costa ◽  
Tales S. Daitx ◽  
Raquel S. Mauler ◽  
Natália M. da Silva ◽  
Marília Miotto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document