scholarly journals The Use of Essential Oils in Active Food Packaging: A Review of Recent Studies

Author(s):  
Muhammad Zeeshan Akram ◽  
Sema Yaman Fırıncıoğlu ◽  
Hassan Jalal ◽  
Sibel Canoğulları Doğan

Public concern on the excessive use of synthetic food additives has raised a great interest to use natural products due to their potential in food and pharmacological industries. Nowadays, chemical food additives are questioned due to their contribution to the health risks and environmental impacts. Among natural additives, essential oils (EOs) are extracted from aromatic compounds and responsible for their biological activities namely antimicrobial and antioxidant capacity. Incorporation of bio-active compounds particularly EOs directly in food or edible/biodegradable food packaging seems to enhance the shelf life and quality characteristics of processed food and protect the consumers against oxidative and bacterial deterioration effects. However, inclusion of EOs in films/coatings for food packaging may put some effects on various properties (optic, tensile and etc.), which can affect the consumer acceptability. Their addition in food can cause some allergic and hypersensitivity reactions to the individuals who use them often. This paper aims to review the latest findings on the use of EOs incorporated with edible/biodegradable films and coatings to enhance the shelf life and quality of the food. Further investigations about essential oils are expected to clarify their exact action and build up their standard use in food industry.

Author(s):  
Emine Arman Kandirmaz ◽  
◽  
Omer Bunyamin Zelzele ◽  

The use of edible biofilms in food packaging reduces the use of petrochemical polymers that are harmful to human health, such as PE, PP, PET. The second most common biopolymer in nature, chitosan is a nontoxic, nonantigenic, biocompatible and biodegradable polymer. Considering these features, it is frequently used in food packaging applications. Increasing needs for food amount and quality canalized food ındustry to fund in new packaging techniques that improve storage life and grade of foods. Active packaging systems, one of these methods, can be designed as a sensor, antimicrobial or antimigrant in order to extend the shelf life of the food product and to inform the shelf life in possible degradation. Essential oils, which are antimicrobial environmentally friendly packaging material additives, are used due to their effective biological activities. Essential oils that have known antimicrobial properties include lavender, rosemary, mint, eucalyptus and geranium. These oils are also edible. In this study, it is aimed to produce antimicrobial, ecofriendly, edible, printable biofilm for active packaging, using chitosan and peppermint essential oil. For this purpose, chitosan biofilms containing different rates (0, 1, 2.5, 5, 10%) of peppermint essential oil were produced by solvent casting method. Surface morphology were examined by SEM. The transparency of biofilms was determined by UV spectroscopy. Antimicrobial properties of the obtained films were determined against S. aureus and E. coli. Biofilms were printed with screen printing. The color, gloss, contact angle, surface tension values of all printed and unprinted samples were examined. As a result, chitosan biofilms which are loaded with peppermint essential oil were successfully produced. Biofilms are colorless, highly transparent and have good printability. It is concluded that the amount of peppermint essential oil increased inhibitory feature against S. aureus and E. coli. When the obtained results are examined, it is determined that the printable, ecofriendly, edible biofilms can be used in active food packaging applications.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1267
Author(s):  
Nagaraj Basavegowda ◽  
Kwang-Hyun Baek

The development of food-borne and infectious diseases has increased globally at an anomalous rate and is combined with emerging social and economic problems. This highlights the need for new and improved antibacterial agents with novel and different mechanisms of action at regular intervals. Some chemical or artificial food additives are considered harmful if they are used beyond their permissible levels. Today, consumers are demanding alternative, green, safer, and natural food additives to increase the shelf life of food. Essential oils (EOs) are concentrated liquid mixtures of volatile compounds with antioxidant and antibacterial properties that can be used as natural, eco-friendly, renewable, and cost-effective additives. The use of combinations of different EOs and their components is a promising strategy to increase the synergistic and additive effects of EOs in foods. In this article, we review the recent literature on EOs concerning the chemical constituents, extraction methods, antioxidant and antibacterial activities, and their mechanisms of action. Additionally, we discuss the synergistic interaction of different EOs and their components, challenges, and future directions of EOs as natural food preservatives, with special emphasis on shelf life extension and applications in the packaging of food products.


2021 ◽  
Vol 23 (1) ◽  
pp. 12
Author(s):  
Wing-Fu Lai

Antioxidant active food packaging can extend the shelf life of foods by retarding the rate of oxidation reactions of food components. Although significant advances in the design and development of polymeric packaging films loaded with antioxidants have been achieved over the last several decades, few of these films have successfully been translated from the laboratory to commercial applications. This article presents a snapshot of the latest advances in the design and applications of polymeric films for antioxidant active food packaging. It is hoped that this article will offer insights into the optimisation of the performance of polymeric films for food packaging purposes and will facilitate the translation of those polymeric films from the laboratory to commercial applications in the food industry.


2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Shahla Ataei ◽  
Pedram Azari ◽  
Aziz Hassan ◽  
Belinda Pingguan-Murphy ◽  
Rosiyah Yahya ◽  
...  

The growth of global food demand combined with the increased appeal to access different foods from every corner of the globe is forcing the food industry to look for alternative technologies to increase the shelf life. Essential oils (EOs) as naturally occurring functional ingredients have shown great prospects in active food packaging. EOs can inhibit the growth of superficial food pathogens, modify nutritious values without affecting the sensory qualities of food, and prolong the shelf life when used in food packaging as an active ingredient. Since 2016, various reports have demonstrated that combinations of electrospun fibers and encapsulated EOs could offer promising results when used as food packaging. Such electrospun platforms have encapsulated either pure EOs or their complexation with other antibacterial agents to prolong the shelf life of food products through sustained release of active ingredients. This paper presents a comprehensive review of the essential oil-loaded electrospun fibers that have been applied as active food packaging material.


2020 ◽  
Vol 14 (2) ◽  
pp. 99-111
Author(s):  
Heriberto A. dos Anjos ◽  
Saionara Luna ◽  
María L. Hernández-Macedo ◽  
Jorge A. López

Background: Antimicrobial and antioxidant packaging play an important role in the food industry by ensuring food quality and prolonging the product’s shelf life. Therefore, this scientific survey covers the technological domain in the active food packaging development processes and types of packaging. Methods: This paper aims to provide a review of patents and scientific publications on active packaging with antimicrobial and antioxidant properties in order to show technological advances in this field of knowledge and its applicability in the food industry. Results: The patent review indicates an increase in the number of documents deposited in recent decades regarding various types of packaging formulations, particularly active packaging to preserve foods and their shelf life. In the last few decades, the scientific publication also includes several studies concerning the development of active food packaging using natural products with antimicrobial and antioxidant proprieties. Overall, the results show the advantages of incorporating natural products into polymer matrices to develop industrial packaging, providing a safe and high-quality food product to the consumer. On the other hand, the review also highlighted lack of cooperation between inventors and companies of active packaging development. Conclusion: Further study in this regard would help provide data form research and patents on the active food-packaging field as well as economic issues, indicating the global development scenario of this innovative area.


2017 ◽  
Vol 35 (No. 1) ◽  
pp. 1-6 ◽  
Author(s):  
Barska Anetta ◽  
Wyrwa Joanna

The manufacturers have to provide modern and safe packaging due to the growing consumer interest in the consumption of fresh products with extended shelf-life and controlled quality. It is a challenge to the food packaging industry and it also acts as a driving force for the development of new and improved concepts of packaging technology. It is in order to meet these needs that intelligent packaging can be applied. This article presents a generation of packaging which allows maintaining and even improving the quality of the packaged product, which is an essential advantage particularly in the food industry. The most important advantage resulting from their use is a reduction in the loss of food products due to the extension of their shelf life.


Author(s):  
Lucas Cavalcanti Escocard Freitas ◽  
Carolina Siqueira Franco Picone ◽  
Antônio Matias Navarrete de Toledo ◽  
Nathalia Cristina Cirone Silva ◽  
Ana Carla Kawazoe Sato

The need to extend food shelf-life has driven the development of new conservation means. Recently, nanotechnology has been on the spotlight due to the enhancement of material’s properties. In this sense, this present work aimed to study the association of graphene oxide, egg lysozyme and soy lecithin on nanoscale for the development of new and improved food additives. The combinaton of their attributes not only achieved a boost of antimicrobial and mechanical properties, but also presented to be a low-cost technique with mild preparation conditions and enhanced properties, opening path food packaging functionalization and other applications.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 272
Author(s):  
Cássia H. Barbosa ◽  
Mariana A. Andrade ◽  
Raquel Séndon ◽  
Ana Sanches Silva ◽  
Fernando Ramos ◽  
...  

Fruit by-products have a low economic value and have proven biological activities, such as antioxidant capacity due to the presence of active compounds. The main objective of this study was to obtain and determine the antioxidant capacity, through DPPH radical assay and β-carotene bleaching assay, of three food grade extracts from apple, lemon, and orange industrial by-products. Furthermore, the extracts were characterized by ultra-high performance liquid chromatography coupled to mass spectrometry (UHPLC-MS/MS). LC with diode array detector (LC-DAD) was used for the quantification of the main polyphenols. Lemon extract presented the highest inhibition percentage of DPPH radical (51.7%) and the highest total phenolics content (43.4 mg GAE/g) from the by-products studied. Orange by-product was that with the higher number of polyphenols while lemon extract was that with the highest content of individual phenolics. The by-product obtained from the lemon was that with higher amounts of hydroxycinnamic acids (407 µg/g of by-product), mainly chlorogenic acid (386.7 µg/g), followed by the apple by-product (128.0 µg/g of by-product), which showed higher amounts of rosmarinic and chlorogenic acids. These industrial by-products have great potential as a source of natural antioxidants to be used directly as food additives or to be incorporated in packaging to produce active food packaging.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 940
Author(s):  
Michael G. Kontominas ◽  
Anastasia V. Badeka ◽  
Ioanna S. Kosma ◽  
Cosmas I. Nathanailides

Seafood products are highly perishable, owing to their high water activity, close to neutral pH, and high content of unsaturated lipids and non-protein nitrogenous compounds. Thus, such products require immediate processing and/or packaging to retain their safety and quality. At the same time, consumers prefer fresh, minimally processed seafood products that maintain their initial quality properties. The present article aims to review the literature over the past decade on: (i) innovative, individual packaging technologies applied to extend the shelf life of fish and fishery products, (ii) the most common combinations of the above technologies applied as multiple hurdles to maximize the shelf life of seafood products, and (iii) the respective food packaging legislation. Packaging technologies covered include: Modified atmosphere packaging; vacuum packaging; vacuum skin packaging; active food packaging, including oxygen scavengers; carbon dioxide emitters; moisture regulators; antioxidant and antimicrobial packaging; intelligent packaging, including freshness indicators; time–temperature indicators and leakage indicators; retort pouch processing and edible films; coatings/biodegradable packaging, used individually or in combination for maximum preservation potential.


Sign in / Sign up

Export Citation Format

Share Document