scholarly journals DESARROLLO DE UNA METODOLOGÍA SENCILLA PARA LA GEORREFERENCIACIÓN Y MEDICIÓN DE DISTANCIAS A PARTIR DE IMÁGENES DE SATÉLITE SISTEMÁTICAMENTE GEORREFERENCIADAS

Author(s):  
Leonardo Gónima ◽  
Libardo E. Ruiz ◽  
Marcos E. González

One of the main problems for a precise georeferencing and distance measurements from satellite images, especially in geographical zones with strong morphologic and environmental dynamics, lies not only in the difficulty for identifying ground control points (GCPs), but also in real limitations for accessing such places. In this work a relatively simple methodology is proposed for georeferencing and distance measuring from satellite images, based on the utilization of previously calculated reflectance images from the surface and then oriented toward the north (systematic georeferencing). From these images and setting a basic control point (pixel) P, measured with GPS, the other GCPs were obtained by measurements of distances defined from the P point to representative points (pixels) on the image, selected for its georeferencing. The statistical validation of the obtained results, using a different sample of GCPs measured with GPS, shows that the precision of the georeferencing and distance measurement utilizing the developed methodology is similar to that obtained by conventional procedures, such as image georeferencing from GPS data.

The recent progress for spatial resolution of remote sensing imagery led to generate many types of Very HighResolution (VHR) satellite images, consequently, general speaking, it is possible to prepare accurate base map larger than 1:10,000 scale. One of these VHR satellite image is WorldView-3 sensor that launched in August 2014. The resolution of 0.31m makes WorldView-3 the highest resolution commercial satellite in the world. In the current research, a pan-sharpen image from that type, covering an area at Giza Governorate in Egypt, used to determine the suitable large-scale map that could be produced from that image. To reach this objective, two different sources for acquiring Ground Control Points (GCPs). Firstly, very accurate field measurements using GPS and secondly, Web Map Service (WMS) server (in the current research is Google Earth) which is considered a good alternative when GCPs are not available, are used. Accordingly, three scenarios are tested, using the same set of both 16 Ground Control Points (GCPs) as well as 14 Check Points (CHKs), used for evaluation the accuracy of geometric correction of that type of images. First approach using both GCPs and CHKs coordinates acquired by GPS. Second approach using GCPs coordinates acquired by Google Earth and CHKs acquired by GPS. Third approach using GCPs and CHKs coordinates by Google Earth. Results showed that, first approach gives Root Mean Square Error (RMSE) planimeteric discrepancy for GCPs of 0.45m and RMSE planimeteric discrepancy for CHKs of 0.69m. Second approach gives RMSE for GCPs of 1.10m and RMSE for CHKs of 1.75m. Third approach gives RMSE for GCPs of 1.10m and RMSE for CHKs of 1.40m. Taking map accuracy specification of 0.5mm of map scale, the worst values for CHKs points (1.75m&1,4m) resulted from using Google Earth as a source, gives the possibility of producing 1:5000 large-scale map compared with the best value of (0.69m) (map scale 1:2500). This means, for the given parameters of the current research, large scale maps could be produced using Google Earth, in case of GCPs are not available accurately from the field surveying, which is very useful for many users.


Author(s):  
P. Molina ◽  
M. Blázquez ◽  
J. Sastre ◽  
I. Colomina

In this paper, we present mapKITE, a new mobile, simultaneous terrestrial and aerial, geodata collection and post-processing method. On one side, the method combines a terrestrial mobile mapping system (TMMS) with an unmanned aerial mapping one, both equipped with remote sensing payloads (at least, a nadir-looking visible-band camera in the UA) by means of which aerial and terrestrial geodata are acquired simultaneously. This tandem geodata acquisition system is based on a terrestrial vehicle (TV) and on an unmanned aircraft (UA) linked by a 'virtual tether', that is, a mechanism based on the real-time supply of UA waypoints by the TV. By means of the TV-to-UA tether, the UA follows the TV keeping a specific relative TV-to-UA spatial configuration enabling the simultaneous operation of both systems to obtain highly redundant and complementary geodata. <br><br> On the other side, mapKITE presents a novel concept for geodata post-processing favoured by the rich geometrical aspects derived from the mapKITE tandem simultaneous operation. The approach followed for sensor orientation and calibration of the aerial images captured by the UA inherits the principles of Integrated Sensor Orientation (ISO) and adds the pointing-and-scaling photogrammetric measurement of a distinctive element observed in every UA image, which is a coded target mounted on the roof of the TV. By means of the TV navigation system, the orientation of the TV coded target is performed and used in the post-processing UA image orientation approach as a Kinematic Ground Control Point (KGCP). The geometric strength of a mapKITE ISO network is therefore high as it counts with the traditional tie point image measurements, static ground control points, kinematic aerial control and the new point-and-scale measurements of the KGCPs. With such a geometry, reliable system and sensor orientation and calibration and eventual further reduction of the number of traditional ground control points is feasible. <br><br> The different technical concepts, challenges and breakthroughs behind mapKITE are presented in this paper, such as the TV-to-UA virtual tether and the use of KGCP measurements for UA sensor orientation. In addition, the use in mapKITE of new European GNSS signals such as the Galileo E5 AltBOC is discussed. Because of the critical role of GNSS technologies and the potential impact on the corridor mapping market, the European Commission and the European GNSS Agency, in the frame of the European Union Framework Programme for Research and Innovation “Horizon 2020,” have recently awarded the “mapKITE” project to an international consortium of organizations coordinated by GeoNumerics S.L.


Author(s):  
Raad Awad Kattan ◽  
◽  
Farsat Heeto Abdulrahman ◽  
Sami Mamlook Gilyana ◽  
Yousif Youkhna Zaya ◽  
...  

The progress in modern technologies such as precise lightweight cameras mounted on unmanned aerial vehicles (UAV) and the more user-friendly software in the photogrammetric field, allows for 3-D model construction of any structure or shape. Software now achieves in sequence the processes of matching, generating tie points, block bundle adjustment, and generating digital elevation models.The aim of this study is to make a virtual 3-D model of the college of engineering /University of Duhok. Kurdistan Region, Iraq. The data input is vertical and oblique imagery acquired by UAV, ground control points distributed on the surrounded ground, facades, and roof. Ground control points were measured by the GPS RTK system in addition to the reflectorless total station instrument. The data is processed mainly using Agisoft PhotoScan software as well as the Global Mapper and the ReCap software. The output is a 3-D model, digital elevation model, and orthomosaic.Geometric and visual inspections were carried out. Some imperfections appeared on the sharp edges and parapets of the building. In the geometric accuracy of selected points on the building, the maximum standard deviation in the coordinates was ±4cm. The relative accuracy in distance measurements were in the range of 0.72% to 4.92 %


Author(s):  
D. Skarlatos ◽  
F. Menna ◽  
E. Nocerino ◽  
P. Agrafiotis

<p><strong>Abstract.</strong> Given the rise and wide adoption of Structure from Motion (SfM) and Multi View Stereo (MVS) in underwater archaeology, this paper investigates the optimal option for surveying ground control point networks. Such networks are the essential framework for coregistration of photogrammetric 3D models acquired in different epochs, and consecutive archaeological related study and analysis. Above the water, on land, coordinates of ground control points are determined with geodetic methods and are considered often definitive. Other survey works are then derived from by using those coordinates as fixed (being ground control points coordinates considered of much higher precision). For this reason, equipment of proven precision is used with methods that not only compute the most correct values (according to the least squares principle) but also provide numerical measures of their precisions and reliability. Under the water, there are two options for surveying such control networks: trilateration and photogrammetry, with the former being the choice of the majority of archaeological expeditions so far. It has been adopted because of ease of implementation and under the assumption that it is more reliable and precise than photogrammetry.</p><p>This work aims at investigating the precision of network establishment by both methodologies by comparing them in a typical underwater archaeological site. Photogrammetric data were acquired and analysed, while the trilateration data were simulated under certain assumptions. Direct comparison of standard deviation values of both methodologies reveals a clear advantage of photogrammetry in the vertical (Z) axis and three times better results in horizontal precision.</p>


Author(s):  
D. R. Abdullahi ◽  
O. O. Oladosu ◽  
S. A. Samson ◽  
L. O. Abegunde ◽  
T. A. Balogun ◽  
...  

Aim: Employ the use of Remote Sensing and Geographic Information System (GIS) to analyze areas of groundwater potentials in Keffi LGA to meet the rate of water demand. Study Design:  The study is designed to delineate and analyze the drainage characteristics, and map out the groundwater potential zones. Place and Duration of Study: The study is conducted in Keffi LGA of Nassarawa State, Nigeria in 2018. Methodology: Both spatial and non-spatial data were utilized for this research, including Ground Control Points, satellite imageries, and maps. The data generated consisting of the rainfall, NDVI, lineament, geology, slope, and relief were prepared into thematic layers and used for the generation of the drainage morphometric parameters and multi-criteria overlay analysis. Each of the layer used has inputs were ranked based on their relative importance in controlling groundwater potential, and divided into classes using the hydro-geological properties. The groundwater potential analysis reveals four distinct zones representing high, moderate, less and least groundwater potential zones. The delineated groundwater potential map was verified using the available Ground Control Point of boreholes across the study area. Results: The drainage of the study area falls in the 4th order, with the drainage density ranging from 0.2 to 1.6. From the groundwater potential map generated using the rainfall, lineament, geology, drainage density, slope, soil, and NDVI attributes, areas categorized having the moderate groundwater potentials cover about 89.1 km2, while the least cover 0.1 km2 of the study area.  Validating the result with borehole locations across the location shows that the boreholes are dug based on the availability of water following the groundwater potentials, and; 59.8% of the settlement area falls within the moderate groundwater potential classes. Conclusion: The area has adequate capacity for water supply, and only those within the high groundwater potential classes can access groundwater throughout the year.


2018 ◽  
Vol 10 (10) ◽  
pp. 1535 ◽  
Author(s):  
Oliver Lang ◽  
Parivash Lumsdon ◽  
Diana Walter ◽  
Jan Anderssohn ◽  
Wolfgang Koppe ◽  
...  

In the course of the TerraSAR-X mission, various new applications based on X-Band Synthetic Aperture Radar (SAR) data have been developed and made available as operational products or services. In this article, we elaborate on proven characteristics of TerraSAR-X that are responsible for development of operational applications. This article is written from the perspective of a commercial data and service provider and the focus is on the following applications with high commercial relevance, and varying operational maturity levels: Surface Movement Monitoring (SMM), Ground Control Point (GCP) extraction and Automatic Target Recognition (ATR). Based on these applications, the article highlights the successful transition of innovative research into sustainable and operational use within various market segments. TerraSAR-X’s high orbit accuracy, its precise radar beam tracing, the high-resolution modes, and high-quality radiometric performance have proven to be the instrument’s advanced characteristics, through, which reliable ground control points and surface movement measurements are obtained. Moreover, TerraSAR-X high-resolution data has been widely exploited for the clarity of its target signatures in the fields of target intelligence and identification. TerraSAR-X’s multi temporal interferometry applications are non-invasive and are now fully standardised autonomous tools to measure surface deformation. In particular, multi-baseline interferometric techniques, such as Persistent Scatter Interferometry (PSI) and Small Baseline Subsets (SBAS) benefit from TerraSAR-X’s highly precise orbit information and phase stability. Similarly, the instrument’s precise orbit information is responsible for sub-metre accuracy of Ground Control Points (GCPs), which are essential inputs for orthorectification of remote sensing imagery, to locate targets, and to precisely georeference a variety of datasets. While geolocation accuracy is an essential ingredient in the intelligence field, high-resolution TerraSAR-X data, particularly in Staring SpotLight mode has been widely used in surveillance, security and reconnaissance applications in real-time and also by automatic or assisted target recognition software.


Author(s):  
C. Amrullah ◽  
D. Suwardhi ◽  
I. Meilano

This study aims to see the effect of non-metric oblique and vertical camera combination along with the configuration of the ground control points to improve the precision and accuracy in UAV-Photogrammetry project. The field observation method is used for data acquisition with aerial photographs and ground control points. All data are processed by digital photogrammetric process with some scenarios in camera combination and ground control point configuration. The model indicates that the value of precision and accuracy increases with the combination of oblique and vertical camera at all control point configuration. The best products of the UAV-Photogrammetry model are produced in the form of Digital Elevation Model (DEM) compared to the LiDAR DEM. Furthermore, DEM from UAV-Photogrammetry and LiDAR are used to define the fault plane by using cross-section on the model and interpretation to determine the point at the extreme height of terrain changes. The result of the defined fault planes indicate that two models do not show any significant difference.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3205 ◽  
Author(s):  
Jairo R. Escobar Villanueva ◽  
Luis Iglesias Martínez ◽  
Jhonny I. Pérez Montiel

Geospatial products, such as digital elevation models (DEMs), are important topographic tools for tackling local flood studies. This study investigates the contribution of LiDAR elevation data in DEM generation based on fixed-wing unmanned aerial vehicle (UAV) imaging for flood applications. More specifically, it assesses the accuracy of UAV-derived DEMs using the proposed LiDAR-derived control point (LCP) method in a Structure-from-Motion photogrammetry processing. Also, the flood estimates (volume and area) of the UAV terrain products are compared with a LiDAR-based reference. The applied LCP-georeferencing method achieves an accuracy comparable with other studies. In addition, it has the advantage of using semi-automatic terrain data classification and is readily applicable in flood studies. Lastly, it proves the complementarity between LiDAR and UAV photogrammetry at the local level.


2019 ◽  
Vol 11 (11) ◽  
pp. 1352 ◽  
Author(s):  
Alphonse Nahon ◽  
Pere Molina ◽  
Marta Blázquez ◽  
Jennifer Simeon ◽  
Sylvain Capo ◽  
...  

Recurrent monitoring of sandy beaches and of the dunes behind them is needed to improve the scientific knowledge on their dynamics as well as to develop sustainable management practices of those valuable landforms. Unmanned Aircraft Systems (UAS) are sought as a means to fulfill this need, especially leveraged by photogrammetric and LiDAR-based mapping methods and technology. The present study compares different strategies to carry UAS photogrammetric corridor mapping over linear extensions of sandy shores. In particular, we present results on the coupling of a UAS with a mobile laser scanning system, operating simultaneously in Cap Ferret, SW France. This aerial-terrestrial tandem enables terrain reconstruction with kinematic ground control points, thus largely avoiding the deployment of surveyed ground control points on the non-stable sandy ground. Results show how these three techniques—mobile laser scanning, photogrammetry based on ground control points, and photogrammetry based on kinematic ground control points—deliver accurate (i.e., root mean square errors < 15 cm) 3D reconstruction of beach-to-dune transition areas, the latter being performed at lower survey and logistic costs, and with enhanced spatial coverage capabilities. This study opens the gate for exploring longer (hundreds of kilometers) shoreline dynamics with ground-control-point-free air and ground mapping techniques.


Sign in / Sign up

Export Citation Format

Share Document