scholarly journals Pengaruh Sumber Karbon pada Produksi Lakase dari Jamur Pelapuk Putih Marasmius sp. dalam Fermentasi Kultur Padat

2018 ◽  
Vol 8 (02) ◽  
pp. 77
Author(s):  
Hendro Risdianto ◽  
Elis Sofianti ◽  
Suraya Suraya ◽  
Sri Harjati Suhardi ◽  
Tjandra Setiadi

Lakase merupakan salah satu enzim ligninolitik yang memiliki kemampuan mendegradasi lignin. Lakase telah diproduksi menggunakan jamur pelapuk putih Marasmius sp. dalam Fermentasi Kultur Padat (FKP) menggunakan jerami padi sebagai media pertumbuhan. Pengaruh sumber karbon yaitu glukosa, gliserol, dan molase dalam medium produksi lakase digunakan dalam penelitian ini. Konsentrasi 0,5%; 1,0%; dan 2,0% digunakan untuk tiap jenis sumber karbon. Hasil menunjukkan bahwa aktivitas tertinggi lakase diperoleh pada kultivasi hari ke 6-10  dengan masing-masing aktivitas (872,0 U/L (hari ke-6), 1516,67 U/L (hari ke-9) dan 1270,69 U/L (hari ke-10). Aktivitas lakase tertinggi diperoleh pada penggunaan medium gliserol dan molase masing-masing adalah 1422,36 U/L (pada konsentrasi 1%, hari ke-7) dan 113,19 U/L (pada konsentrasi 2%, hari ke-8). Aktivitas tertinggi tersebut sebanding dengan penggunaan medium glukosa. Oleh karena itu, gliserol dan molase dapat digunakan sebagai alternatif sumber karbon untuk produksi lakase dengan fermentasi kultur padat.Kata kunci: glukosa, gliserol, lakase, molase, Marasmius sp., fermentasi kultur padat Influence of Carbon Sources on Laccase Production by White Rot Fungus Marasmius sp. in Solid State FermentationAbstractLaccase is an one of the ligninolytic enzymes that capable to degrade lignin in biomass. Laccase has been produced by white rot fungus Marasmius sp. in Solid State Fermentation (SSF) using rice straw as the solid support media. The influence of carbon sources, i.e. glucose, glycerol and molasses in medium of laccase production were studied in this paper. The concentration of 0.5%, 1.0% and 2.0% were used for each carbon sources. The results showed that the highest lacase activity was obtained within 6-10 days of cultivation. Glucose concentration of 0.5%, 1.0% and 2.0% gave the highest laccase activity were 872.0 U/L (day 6), 1516.67 U/L (day 9) and 1270.69 U/L (day 10) respectively. The highest laccase activity on using glycerol and molasses was 1422.36 U/L (at concentration of 1 % on day 7th) and 1113.19 U/L (at concentration of 2% on day 8th), respectively. This activity was comparable to that of glucose substrate. Therefore, glycerol and molasses gave a potential chance as carbon sources for the strategy on low cost laccase production in solid state fermentation.Keywords: glucose, glycerol, laccase, molasses, Marasmius sp., solid state fermentation. 

2020 ◽  
Vol 898 ◽  
pp. 29-35
Author(s):  
Asri Peni Wulandari ◽  
Zulfa Illiyyin ◽  
Hendro Risdianto

Ramie solid waste as chips can be used as raw material for pulp. Ligninolytic enzymes of laccase widely used for pretreatment of the pulping process of ramie chips by biodelignification using laccase produced by Penicillium sp. LX/08 has been done. This study aims to obtain optimal concentrations of lignin and CuSO4 as enzyme inducers to increase laccase production from Penicillium sp. LX/08 during biodelignification process and its effect on the quality of ramie pulp. The biodelignification process of ramie chips was carried out by solid state fermentation (SSF) method with six days incubation time. Two inducer type treatment factors (CuSO4 and lignin), and variations in the concentration of each lignin (0.25 g/L, 0.5 g/L, 0.75 g/L) and CuSO4 (0.25 mM, 0.5 mM, 0.75 mM) were investigated in this study. The pulping process was carried out by the soda process in a digester under conditions: 12% active alkaline, temperature of 165°C for 3.5 hours. The results showed that 0.75 mM and 0.5 g/L of lignin were the optimal concentrations which could increase the laccase activity of Penicillium sp. LX/08 by 343 U/L and 25,8 U/L, respectively. The quality of ramie pulp showed a decrease in Kappa Number of 9,34% with an increase in pulp yield to 55,43%. Based on these results, the pretreatment method using laccase produced by Penicillium sp. LX/08 can assist the pulping process of ramie.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5287-5300
Author(s):  
Qi An ◽  
Cong-Sheng Li ◽  
Jing Yang ◽  
Si-Yu Chen ◽  
Kai-Yue Ma ◽  
...  

Pleurotus ostreatus and a newly isolated Ganoderma lingzhi strain were evaluated for their laccase secretion capacity by solid-state fermentation with different agricultural and forestry residues. There was a significant difference among fungi for biosynthetic potential. In principle, the laccase secretion capacity of P. ostreatus CY 568 was stronger than that from G. lingzhi Han 500. Different species of fungi had a preference for agricultural and forestry residues. The presence of cottonseed hull and Populus beijingensis were helpful for accelerating the rate of laccase enzyme production of P. ostreatus CY 568. Cottonseed hull and corncob were useful for improving the production of laccase from G. lingzhi Han 500. Continuous and stable laccase production was found on cottonseed hull by P. ostreatus CY 568 and G. lingzhi Han 500. Maximum laccase activity obtained from P. ostreatus CY 568 on Toona sinensis, Sophora japonica, Salix babylonica, Populus beijingensis, corncob, cottonseed hull, and straw of Oryza sativa was higher than that from G. lingzhi Han 500, and was nearly 1.16-fold, 1.59-fold, 3.32-fold, 1.39-fold, 1.08-fold, 1.08-fold, and 1.36-fold, respectively. These findings will be helpful for developing new productive strains and expanding more species for industrial application to obtain efficient and low-cost laccase.


2018 ◽  
Vol 78 (4) ◽  
pp. 718-727 ◽  
Author(s):  
J. A. Chicatto ◽  
K. T. Rainert ◽  
M. J. Gonçalves ◽  
C. V. Helm ◽  
D. Altmajer-Vaz ◽  
...  

Abstract In this work we have assessed the decolorization of textile effluents throughout their treatment in a solid-state fermentation (SSF) system. SSF assays were conducted with peach-palm (Bactris gasipaes) residue using the white rot fungus Ganoderma lucidum EF 31. The influence of the dye concentration and of the amounts of peach-palm residue and liquid phase on both the discoloration efficiency and enzyme production was studied. According to our results, independently of experimental conditions employed, laccase was the main ligninolytic enzyme produced by G. lucidum. The highest laccase activity was obtained at very low effluent concentrations, suggesting the existence of an inhibitory effect of higher concentrations on fungal metabolism. The highest percentage of color removal was reached when 10 grams of peach palm residue was moistened with 60 mL of the final effluent. In control tests carried out with the synthetic dye Remazol Brilliant Blue R (RBBR) decolorization efficiencies about 20% higher than that achieved with the industrial effluent were achieved. The adsorption of RBBR on peach-palm residue was also investigated. Equilibrium tests showed that the adsorption of this dye followed both Langmuir and Freundlich isotherms. Hence, our experimental results indicate that peach-palm residue is suitable substrate for both laccase production and color removal in industrial effluents.


2016 ◽  
Vol 3 (02) ◽  
Author(s):  
Cornelius Damar Hanung ◽  
Ronald Osmond ◽  
Hendro Risdianto ◽  
Sri Harjati Suhardi ◽  
Tjandra Setiadi

White rot fungi of Marasmius sp. is a fungus which produce laccase in high activity. Laccase is one of the ligninolityc enzymes that capable to degrade lignin. This ability can be used for the pretreatment of lignocellulosic materials in the bioethanol production. Laccase was produced in flask by batch process using Solid State Fermentation (SSF). The optimisation was conducted by statistically of full factorial design. The particle size, moisture content, and Cu concentration were investigated in this study. Rice straw was used as solid substrate and the glycerol was used as the carbon sources in modified Kirk medium. The results showed that particle size of rice straw did not affect significantly to the enzyme activity. The highest laccase activity of 4.45 IU/g dry weight was obtained at the moisture content of 61% and Cu concentration of 0.1 mM.Keywords: laccase, Marasmius sp., optimisation, rice straw, solid state fermentation ABSTRAKJamur pelapuk putih, Marasmius sp. merupakan jamur yang menghasilkan enzim lakase dengan aktivitas tinggi. Lakase merupakan enzim ligninolitik yang dapat mendegradasi lignin. Kemampuan ini dapat digunakan untuk proses pengolahan awal bahan lignoselulosa pada pembuatan bioetanol. Produksi lakase dilakukan dalam labu dengan modus batch menggunakan fermentasi kultur padat. Optimisasi produksi enzim lakase dengan metode fermentasi padat dilakukan dengan  rancangan percobaan faktorial penuh. Pengaruh ukuran partikel, kelembapan, dan konsentrasi Cu diuji dengan medium penyangga jerami dengan menambahkan gliserol dalam medium Kirk termodifikasi sebagai sumber karbon. Penelitian ini menunjukkan bahwa ukuran jerami tidak berpengaruh signifikan terhadap aktivitas enzim. Aktivitas enzim lakase maksimum terjadi pada saat kelembapan 61% dan konsentrasi Cu 0,1 mM dengan aktivitas enzim lakase/berat kering tertinggi mencapai 4,45 IU/g.Kata kunci: lakase, Marasmius sp., optimisasi, jerami, fermentasi kultur padat


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3797-3807
Author(s):  
Magdah Ganash ◽  
Tarek M. Abdel Ghany ◽  
Mohamed A. Al Abboud ◽  
Mohamed M. Alawlaqi ◽  
Husam Qanash ◽  
...  

Lignocellulolytic white-rot fungi allow the bioconversion of agricultural wastes into value-added products that are used in a myriad of applications. The aim of this work was to use corn residues (Zea mays L.) to produce valuable products under solid-state fermentation (SSF) with Pleurotus ostreatus. White-rot fungus P. ostreatus was isolated from maize silage (MS) and thereafter it was inoculated on MS as substrate and compared with maize stover (MSt) and maize cobs (MC) to determine the best lignocellulosic substrate for the production of lignocellulolytic enzymes and extracellular protein. The MS gave the highest productivity of CMCase (368.2 U/mL), FPase (170.5 U/mL), laccase (11.4 U/mL), and MnPase (6.6 U/mL). This is compared to productivity on MSt of 222 U/mL, 50.2 U/mL, 4.55 U/mL, and 2.57 U/mL, respectively; and productivity on MC at the same incubation period as 150.5 U/mL, 48.2 U/mL, 3.58 U/mL, and 2.5 U/mL, respectively. The levels of enzyme production declined with increasing incubation period after 15 and 20 days using MS and MC, respectively, as substrates. Maximum liberated extracellular protein content (754 to 878 µg/mL) was recorded using MS, while a low amount (343 to 408 µg/mL) was liberated with using MSt and MC.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
K. Y. Usha ◽  
K. Praveen ◽  
B. Rajasekhar Reddy

The white rot fungi Stereum ostrea displayed a wide diversity in their response to supplemented inducers, surfactants, and copper sulphate in solid state fermentation. Among the inducers tested, 0.02% veratryl alcohol increased the ligninolytic enzyme production to a significant extent. The addition of copper sulphate at 300 μM concentration has a positive effect on laccase production increasing its activity by 2 times compared to control. Among the surfactants, Tween 20, Tween 80, and Triton X 100, tested in the studies, Tween 80 stimulated the production of ligninolytic enzymes. Biosorption of dyes was carried out by using two lignocellulosic wastes, rice bran and wheat bran, in 50 ppm of remazol brilliant blue and remazol brilliant violet 5R dyes. These dye adsorbed lignocelluloses were then utilized for the production of ligninolytic enzymes in solid state mode. The two dye adsorbed lignocelluloses enhanced the production of laccase and manganese peroxidase but not lignin peroxidase.


2020 ◽  
Vol 42 ◽  
pp. e52699 ◽  
Author(s):  
Alex Graça Contato ◽  
Fabíola Dorneles In´ácio ◽  
Tatiane Brugnari ◽  
Caroline Aparecida Vaz de Araújo ◽  
Giselle Maria Maciel ◽  
...  

Laccases are oxidoreductase enzymes that have the ability to oxidize phenolic substrates. Its biotechnological potential has been greatly explored in many areas as biotechnology industry, bioremediation of dyes, food industry and environmental microbiology. The aim of this study was maximize the laccase production by Pleurotus pulmonarius (Fr.) Quélet in solid-state fermentation (SSF) using orange waste as substrate. After optimization the capability of the crude laccase to decolorize dyes was analyzed. The fermentation medium in the solid-state was optimized by applying a factorial design. After statistics optimization, laccase activity increased two times. The laccase activity appears to be correlated with the ability of crude extract to decolorize some industrial dyes. The optimized laccase was characterized with respect to optimum pH, influence of temperature and salts. Our results demonstrate that P. pulmonarius was an efficient producer of an important industrial enzyme, laccase, in a cheap solid-state system using orange waste as substrate.


Sign in / Sign up

Export Citation Format

Share Document