1718 In vitro efficacy of three novel compounds on development and survival of gastrointestinal nematode larvae in feces of sheep

2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 837-837
Author(s):  
J. E. Miller ◽  
V. Kelly ◽  
J. M. Burke
2020 ◽  
Vol 31 (3) ◽  
pp. 145-159
Author(s):  
Haladu Ali Gagman ◽  
Nik Ahmad Irwan Izzauddin Nik Him ◽  
Hamdan Ahmad ◽  
Shaida Fariza Sulaiman ◽  
Rahmad Zakaria ◽  
...  

Gastrointestinal nematode infections can cause great losses in revenue due to decrease livestock production and animal death. The use of anthelmintic to control gastrointestinal nematode put a selection pressure on nematode populations which led to emergence of anthelmintic resistance. Because of that, this study was carried out to investigate the efficacy of aqueous and methanol extract of Cassia siamea against the motility of C. elegans Bristol N2 and C. elegans DA1316. Caenorhabditis elegans Bristol N2 is a susceptible strain and C. elegans DA1316 is an ivermectin resistant strain. In vitro bioassay of various concentrations of (0.2, 0.6, 0.8, 1.0 and 2.0 mg mL–1) aqueous and methanol extracts of C. siamea was conducted against the motility of L4 larvae of C. elegans Bristol N2 and C. elegans DA1316. The L4 larvae were treated with 0.02 μg mL–1 of ivermectin served as positive control while those in M9 solution served as negative control. The activity of the extracts was observed after 24 h and 48 h. A significant difference was recorded in the extract performance compared to control at (P < 0.001) after 48 h against the motility of the larvae of both strains. The methanol extracts inhibited the motility of C. elegans Bristol N2 by 86.7% as well as DA1316 up to 84.9% at 2.0 mg mL–1 after 48 h. The methanol extract was more efficient than aqueous extract (P < 0.05) against the motility of both strains of C. elegans. Cassia siamea may be used as a natural source of lead compounds for the development of alternative anthelmintic against parasitic nematodes as well ivermectin resistant strains of nematodes.


Parasitology ◽  
1981 ◽  
Vol 83 (3) ◽  
pp. 513-518 ◽  
Author(s):  
J. P. Laclette ◽  
Marie Therese Merchant ◽  
Kaethe Willms ◽  
L. Cañedo

SUMMARYThe effect of the anthelmintic Mebendazole on Cysticercus cellulosae maintained in culture medium was studied by transmission electron microscopy. In addition to the well-known morphological changes induced by Mebendazole in other cestode and nematode larvae, it also induced the cytoplasmic appearance of paracrystalline bundles in the secretory cells of the bladder wall. These bundles were formed by groups of large parallel tubules arranged in a hexagonal-like pattern. The tubules, which had an external diameter of about 50 nm and a length that might exceed 5 μm, were surrounded by a matrix and a distance between neighbouring tubules of 80–120 nm centre to centre was estimated. The tubules were stable to colchicine and low temperature. The temporary appearance of bundles is described and some alternative explanations on their origin are advanced.


2019 ◽  
Vol 174 ◽  
pp. 62-68 ◽  
Author(s):  
Jalise Fabíola Tontini ◽  
Cesar Henrique Espírito Candal Poli ◽  
Viviane da Silva Hampel ◽  
Neuza Maria Fajardo ◽  
Anelise Afonso Martins ◽  
...  

2014 ◽  
Vol 6 (4) ◽  
pp. 109 ◽  
Author(s):  
Seth Blackie

In this paper, the gastrointestinal nematode parasites infecting small ruminants (sheep and goats) in Ghana and the epidemiological factors influencing their prevalence are reviewed and discussed. Twelve nematode species belonging to six families have been reported to infect these livestock in the country with Haemonchus contortus being the most prevalent helminth parasite in both animals. Parasitic gastroenteritis is caused by mixed infection of several nematode species. Management /husbandry practices, climate and host influence are found to be the main factors that affect gastrointestinal nematode infections in sheep and goats. Seasonal changes in the level of infective strongylate nematode larvae on pasture in the different agro-ecological zones of Ghana are reviewed. The number of infective larvae on pasture is reported to be directly related to the pattern of rainfall. Consequently, rainfall could be relied on to predict the rate of transmission of infection in grazing animals. Finally, the relevance of epidemiological knowledge in the development of efficient measures for controlling gastrointestinal nematode infections in sheep and goats in Ghana is discussed.


Parasitology ◽  
2004 ◽  
Vol 130 (2) ◽  
pp. 203-211 ◽  
Author(s):  
G. STEPEK ◽  
D. J. BUTTLE ◽  
I. R. DUCE ◽  
A. LOWE ◽  
J. M. BEHNKE

We examined the mechanism of action and compared the anthelmintic efficacy of cysteine proteinases from papaya, pineapple, fig, kiwi fruit and Egyptian milkweed in vitro using the rodent gastrointestinal nematode Heligmosomoides polygyrus. Within a 2 h incubation period, all the cysteine proteinases, with the exception of the kiwi fruit extract, caused marked damage to the cuticle of H. polygyrus adult male and female worms, reflected in the loss of surface cuticular layers. Efficacy was comparable for both sexes of worms, was dependent on the presence of cysteine and was completely inhibited by the cysteine proteinase inhibitor, E-64. LD50 values indicated that the purified proteinases were more efficacious than the proteinases in the crude latex, with purified ficin, papain, chymopapain, Egyptian milkweed latex extract and pineapple fruit extract, containing fruit bromelain, having the most potent effect. The mechanism of action of these plant enzymes (i.e. an attack on the protective cuticle of the worm) suggests that resistance would be slow to develop in the field. The efficacy and mode of action make plant cysteine proteinases potential candidates for a novel class of anthelmintics urgently required for the treatment of humans and domestic livestock.


2012 ◽  
Vol 188 (1-2) ◽  
pp. 60-67 ◽  
Author(s):  
K.A. Cassida ◽  
E.C. Lester ◽  
J.G. Foster ◽  
K.E. Turner

2016 ◽  
Vol 91 (4) ◽  
pp. 454-461 ◽  
Author(s):  
R.S. Tomar ◽  
S. Preet

AbstractThe present study focuses on the in vitro anthelmintic activity of silver nanoparticles (AgNPs) synthesized using the aqueous extract of Azadirachta indica against Haemonchus contortus. The synthesized AgNPs were characterized by ultraviolet–visible (UV-Vis) spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) studies. The UV-Vis spectrum exhibited a sharp peak at 420 nm, which was validated by electron microscopy, indicating the preparation of spherical nanoparticles measuring 15–25 nm in size. The in vitro study was based on an egg hatch assay (EHA) and adult motility inhibition assays. Six concentrations of AgNPs were used for EHA, ranging from 0.00001 to 1.0 μg/ml, and a range of 1–25 μg/ml was used for adult worms. The highest concentration induced 85 ± 2.89% egg hatch inhibition. The IC50 value for EHA was 0.001 μg/ml, whereas in vitro adult H. contortus motility inhibition was produced at 7.89 μg/ml (LC50). The effectiveness of A. indica leaf extract (aqueous) was also evaluated, which showed an IC50 value for EHA of 115.67 μg/ml, while the LC50 against adult H. contortus was 588.54 μg/ml. The overall findings of the present study show that the experimental plant extract contains reducing properties for the synthesis of AgNPs which, in turn, showed potent anthelmintic properties. This is the first report where AgNPs have been tested for their anthelmintic properties in an in vitro model.


Sign in / Sign up

Export Citation Format

Share Document