Discussion on Negative Refraction and Perfect Lens

PIERS Online ◽  
2005 ◽  
Vol 1 (1) ◽  
pp. 34-36 ◽  
Author(s):  
Long Gen Zheng ◽  
Wenxun Zhang
2000 ◽  
Vol 85 (18) ◽  
pp. 3966-3969 ◽  
Author(s):  
J. B. Pendry

2005 ◽  
Vol 19 (23) ◽  
pp. 3547-3561
Author(s):  
LIANG FENG ◽  
XIAO-PING LIU ◽  
JIE REN ◽  
YAN-FENG CHEN ◽  
YONG-YUAN ZHU

Using the equifrequency surfaces (EFS) to describe negative refractions in left-handed materials (LHMs) and photonic crystals (PCs), negative phase and negative group refractive indexes in LHMs were compared with positive phase and negative group refractive indexes in PCs. The refractive indexes in PCs were dependent on frequencies and incident angles of electromagnetic wave, while indexes in LHMs were constant in the left-handed region. Furthermore, the phase compensating effect resulting from the negative phase refractive index was addressed to distinguish the perfect lens made of LHMs from the superlens realized in the all angle negative refraction (AANR) region of PCs.


2008 ◽  
Vol 372 (43) ◽  
pp. 6518-6520 ◽  
Author(s):  
A.G. Ramm

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benoit Tallon ◽  
Artem Kovalenko ◽  
Olivier Poncelet ◽  
Christophe Aristégui ◽  
Olivier Mondain-Monval ◽  
...  

AbstractNegative refraction of acoustic waves is demonstrated through underwater experiments conducted at ultrasonic frequencies on a 3D locally resonant acoustic metafluid made of soft porous silicone-rubber micro-beads suspended in a yield-stress fluid. By measuring the refracted angle of the acoustic beam transmitted through this metafluid shaped as a prism, we determine the acoustic index to water according to Snell’s law. These experimental data are then compared with an excellent agreement to calculations performed in the framework of Multiple Scattering Theory showing that the emergence of negative refraction depends on the volume fraction $$\Phi$$ Φ of the resonant micro-beads. For diluted metafluid ($$\Phi =3\%$$ Φ = 3 % ), only positive refraction occurs whereas negative refraction is demonstrated over a broad frequency band with concentrated metafluid ($$\Phi =17\%$$ Φ = 17 % ).


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4018
Author(s):  
Hao Song ◽  
Xiaodong Ding ◽  
Zixian Cui ◽  
Haohao Hu

Acoustic metamaterials are materials with artificially designed structures, which have characteristics that surpass the behavior of natural materials, such as negative refraction, anomalous Doppler effect, plane focusing, etc. This article mainly introduces and summarizes the related research progress of acoustic metamaterials in the past two decades, focusing on meta-atomic acoustic metamaterials, metamolecular acoustic metamaterials, meta-atomic clusters and metamolecule cluster acoustic metamaterials. Finally, the research overview and development trend of acoustic metasurfaces are briefly introduced.


Sign in / Sign up

Export Citation Format

Share Document