Flood hazard zonation of upper kolodyne using GIS and multi criteria decision analysis in Mizoram, India

2021 ◽  
Vol 14 (12) ◽  
pp. 1-12
Author(s):  
Ch Vabeihmo ◽  
Malsawm Tluanga ◽  
John Blick ◽  
Sathing Sangchungnunga ◽  
Francis Zodinthara

Kolodyne is the largest river in Mizoram. The river originates in Myanmar where it flows in a southerly direction and enters Mizoram where it is called Chhimtuipui river and it becomes the international border between India and Myanmar. The Kolodyne river meets several rivers in Mizoram before it enters Chin State in Myanmar again. The upper Kolodyne river has caused destructive floods recently, however, attempts to delineate the flood hazard zones have not been carried out. This river is a source of livelihood for many families in the region and it had wrecked havoc in the past monsoon seasons with the loss of lives and property. The potential flood hazard zonation of the upper Kolodyne watershed using geographic information systems and multi-criteria decision analysis has revealed that about 40% of the total watershed fall in the high and very high potential zones and flood control measures are needed to be updated.

2021 ◽  
Author(s):  
Mohamed Abd-el-Kader ◽  
Ahmed Elfeky ◽  
Mohamed Saber ◽  
Maged AlHarbi ◽  
abed Alataway

Abstract Flash floods are highly devastating, however there is no effective management for their water in Saudi Arabia, therefore, it is crucial to adopt Rainfall Water Harvesting (RWH) techniques to mitigate the flash floods and manage the available water resources from the infrequent and rare rainfall storms. The goal of this study is to create a potential flood hazard map and a map of suitable locations for RWH in Wadi Nisah, Saudi Arabia for future water management and flood prevention plans and to identify potential areas for rainwater harvesting and dam construction for both a flood mitigation and water harvesting. This research was carried out using a spatiotemporal distributed model based on multi-criteria decision analysis by combining Geographic Information System (GIS), Remote Sensing (RS), and Multi-Criteria Decision-Making tools (MCDM). The flood hazard mapping criteria were elevation, drainage density, slope, direct runoff depth at 50 years return period, Topographic witness index, and Curve Number, according to the Multi-criteria decision analysis, while the criteria for RWH were Slope, Land cover, Stream order, Lineaments density, and Average of annual max-24hr Rainfall. The weight of each criteria was estimated based on Analytical Hierarchy Process (AHP). In multi-criteria decision analysis, 21.55 % of the total area for Wadi Nisah was classified as extremely dangerous and dangerous; 65.29 % of the total area was classified as moderate; and 13.15 % of the total area was classified as safe and very safe in flash flood hazard classes. Only 15% of Wadi Nisah has a very high potentiality for RWH and 27.7%, 57.31% of the basin has a moderate and a low or extremely low potentiality of RWH, respectively. According to the developed RWH potentiality map, two possible dam sites were proposed. The maximum height of the proposed dams, which corresponded to the cross section of dam locations, ranged from 6.2 to 9 meters; the maximum width of dams ranged from 573.48 to 725 meters; the maximum storage capacity of reservoirs, which corresponded to the distribution of topographic conditions in the surrounding area, ranged from 3976104.499 m3 to 4328509.123 m3; and the maximum surface area of reservoirs ranged from 1268372.625 m2 to 1505825.676.14 m2. These results are highly important for the decision makers for not only flash flood mitigation but also water management in the study area.


2009 ◽  
Vol 6 (6) ◽  
pp. 6833-6864
Author(s):  
P. Fabio ◽  
G. T. Aronica ◽  
H. Apel

Abstract. Hydraulic models for flood propagation description are an essential tool in many fields, e.g. civil engineering, flood hazard and risk assessments, evaluation of flood control measures, etc. Nowadays there are many models of different complexity regarding the mathematical foundation and spatial dimensions available, and most of them are comparatively easy to operate due to sophisticated tools for model setup and control. However, the calibration of these models is still underdeveloped in contrast to other models like e.g. hydrological models or models used in ecosystem analysis. This has basically two reasons: first, the lack of relevant data against the models can be calibrated, because flood events are very rarely monitored due to the disturbances inflicted by them and the lack of appropriate measuring equipment in place. Secondly, especially the two-dimensional models are computationally very demanding and therefore the use of available sophisticated automatic calibration procedures is restricted in many cases. This study takes a well documented flood event in August 2002 at the Mulde River in Germany as an example and investigates the most appropriate calibration strategy for a full 2-D hyperbolic finite element model. The model independent optimiser PEST, that gives the possibility of automatic calibrations, is used. The application of the parallel version of the optimiser to the model and calibration data showed that a) it is possible to use automatic calibration in combination of 2-D hydraulic model, and b) equifinality of model parameterisation can also be caused by a too large number of degrees of freedom in the calibration data in contrast to a too simple model setup. In order to improve model calibration and reduce equifinality a method was developed to identify calibration data with likely errors that obstruct model calibration.


2010 ◽  
Vol 14 (6) ◽  
pp. 911-924 ◽  
Author(s):  
P. Fabio ◽  
G. T. Aronica ◽  
H. Apel

Abstract. Hydraulic models for flood propagation description are an essential tool in many fields and are used, for example, for flood hazard and risk assessments, evaluation of flood control measures, etc. Nowadays there are many models of different complexity regarding the mathematical foundation and spatial dimensions available, and most of them are comparatively easy to operate due to sophisticated tools for model setup and control. However, the calibration of these models is still underdeveloped in contrast to other models like e.g. hydrological models or models used in ecosystem analysis. This has two primary reasons: first, lack of relevant data against which the models can be calibrated, because flood events are very rarely monitored due to the disturbances inflicted by them and the lack of appropriate measuring equipment in place. Second, 2-D models are computationally very demanding and therefore the use of available sophisticated automatic calibration procedures is restricted in many cases. This study takes a well documented flood event in August 2002 at the Mulde River in Germany as an example and investigates the most appropriate calibration strategy for a simplified 2-D hyperbolic finite element model. The model independent optimiser PEST, that enables automatic calibrations without changing model code, is used and the model is calibrated against over 380 surveyed maximum water levels. The application of the parallel version of the optimiser showed that (a) it is possible to use automatic calibration in combination of 2-D hydraulic model, and (b) equifinality of model parameterisation can also be caused by a too large number of degrees of freedom in the calibration data in contrast to a too simple model setup. In order to improve model calibration and reduce equifinality, a method was developed to identify calibration data, resp. model setup with likely errors that obstruct model calibration.


Sign in / Sign up

Export Citation Format

Share Document