scholarly journals Study on a Structural Response Analysis Method for Very Large Floating Structures in Regular Waves (First Report)

2002 ◽  
Vol 2002 (192) ◽  
pp. 653-660 ◽  
Author(s):  
Hideyuki Seto ◽  
Shoji Kawakado ◽  
Mayumi Ochi ◽  
Makoto Ohta
1984 ◽  
Vol 106 (1) ◽  
pp. 10-17 ◽  
Author(s):  
K. Yoshida ◽  
M. Ozaki ◽  
N. Oka

A linear response analysis method of the tension leg platform (TLP) subjected to regular waves is proposed. In this analysis method, flexibility of the superstructure can be taken into account in the equations of motion; response motions, tension variations of tendons and structural member forces are solved simultaneously. The applicability of this method is confirmed by comparison with the test results on two kinds of small-scale TLP models. The structural responses obtained from these calculations and their effects on tension variation of tendons are studied. Finally, several kinds of structural response characteristics are conclusively discussed.


1975 ◽  
Author(s):  
C. C. Chamis ◽  
M. D. Minich

A fiber composite airfoil, typical for high-tip speed compressor applications, is subjected to load conditions anticipated to be encountered in such applications, and its structural response is theoretically investigated. The analysis method used consists of composite mechanics embedded in pre- and post-processors and coupled with NASTRAN. The load conditions examined include thermal due to aerodynamic heating, pressure due to aerodynamic forces, centrifugal, and combinations of these. The various responses investigated include root reactions due to various load conditions, average composite and ply stresses, ply delaminations, and the fundamental modes and the corresponding reactions. The results show that the thermal and pressure stresses are negligible compared to those caused by the centrifugal forces. Also, the core-shell concept for composite blades is an inefficient design (core plies not highly stressed) and appears to be sensitive to interply delaminations. The results are presented in graphical and tabular forms to illustrate the types and amount of data required for such an analysis, and to provide quantitative data of the various responses which can be helpful in designing such composite blades.


1985 ◽  
Vol 1985 (158) ◽  
pp. 214-221
Author(s):  
Koichiro Yoshida ◽  
Hideyuki Suzuki ◽  
Noriaki Oka

1995 ◽  
Vol 9 (2) ◽  
pp. 218-227 ◽  
Author(s):  
Steven S. Seefeldt ◽  
Jens Erik Jensen ◽  
E. Patrick Fuerst

Dose-response studies are an important tool in weed science. The use of such studies has become especially prevalent following the widespread development of herbicide resistant weeds. In the past, analyses of dose-response studies have utilized various types of transformations and equations which can be validated with several statistical techniques. Most dose-response analysis methods 1) do not accurately describe data at the extremes of doses and 2) do not provide a proper statistical test for the difference(s) between two or more dose-response curves. Consequently, results of dose-response studies are analyzed and reported in a great variety of ways, and comparison of results among various researchers is not possible. The objective of this paper is to review the principles involved in dose-response research and explain the log-logistic analysis of herbicide dose-response relationships. In this paper the log-logistic model is illustrated using a nonlinear computer analysis of experimental data. The log-logistic model is an appropriate method for analyzing most dose-response studies. This model has been used widely and successfully in weed science for many years in Europe. The log-logistic model possesses several clear advantages over other analysis methods and the authors suggest that it should be widely adopted as a standard herbicide dose-response analysis method.


Author(s):  
Mohammad Reza Tabeshpour ◽  
Reza Hedayatpour

Having deep view in structural response of tension leg platform is important issue not only for response analysis but also for engineering design. Coupling between surge and heave motions of tension leg platform is such a problem. Here, tension leg platform motions are considered only in surge and heave degrees of freedom without pitch effect. The coupled term of heave is a nonlinear differential equation. Because the focus of this article is on this term, therefore, Duffing equation of motion in the surge direction is linearized. The wave forces are calculated using Airy’s wave theory and Morison’s equation, ignoring the diffraction effects. Current force also can be very important in dynamic analysis of tension leg platform. Because it affects the term of heave that is coupled with surge. It is shown that the effect of surge motion coupling on heave motion is very important in large displacement of surge motion in many sea states. The main result is that the coupling effects appeared in some frequencies such as heave and surge frequency, twice the frequency of wave, twice the natural surge frequency, and summation and difference of frequency of wave and surge frequency.


Sign in / Sign up

Export Citation Format

Share Document