Analytical investigation of nonlinear heave-coupled response of tension leg platform

Author(s):  
Mohammad Reza Tabeshpour ◽  
Reza Hedayatpour

Having deep view in structural response of tension leg platform is important issue not only for response analysis but also for engineering design. Coupling between surge and heave motions of tension leg platform is such a problem. Here, tension leg platform motions are considered only in surge and heave degrees of freedom without pitch effect. The coupled term of heave is a nonlinear differential equation. Because the focus of this article is on this term, therefore, Duffing equation of motion in the surge direction is linearized. The wave forces are calculated using Airy’s wave theory and Morison’s equation, ignoring the diffraction effects. Current force also can be very important in dynamic analysis of tension leg platform. Because it affects the term of heave that is coupled with surge. It is shown that the effect of surge motion coupling on heave motion is very important in large displacement of surge motion in many sea states. The main result is that the coupling effects appeared in some frequencies such as heave and surge frequency, twice the frequency of wave, twice the natural surge frequency, and summation and difference of frequency of wave and surge frequency.

2014 ◽  
Vol 11 (2) ◽  
pp. 105-116
Author(s):  
D. S. Bhaskara Rao ◽  
R. Panneer Selvam ◽  
Nagan Srinivasan

Tension Leg Platforms (TLPs) are one of the reliable structures for offshore industry in deep waters because of its motion characteristics in heave, roll and pitch degrees of freedom. Heave motion is very important in offshore facilities and have to kept as minimum as possible. As the water depth increases TLPs suffers from some limitations and hence has to be modified to cater to deeper waters. One such concept proposed is Tension Based Tension Leg Platform (TBTLP). In this paper, experimental investigations carried out on a scaled model of a Tension Based Tension Leg Platform in regular waves are reported. This is the first ever experiments that was carried out on a scaled model of the new concept. To investigate the effect of Tension Base, experiments were also conducted on the TLP (without Tension Base) in two different water depths. RAOs have been compared for surge and heave dof of TLP and TBTLP. Numerical modeling of the TLP and TBTLP responses using ANSYS AQWA software are included as well for comparisons.DOI: http://dx.doi.org/10.3329/jname.v11i2.17341


1984 ◽  
Vol 106 (4) ◽  
pp. 437-443 ◽  
Author(s):  
P. D. Spanos ◽  
V. K. Agarwal

A simple single-degree-of-freedom model of a tension leg platform is used to assess the reliability of the common practice of calculating wave-induced forces at the undisplaced position of offshore structures. This assessment is conducted in conjunction with the Morison equation based modeling of the wave-induced forces on slender structural members. It is shown by numerically integrating the equation of motion that the calculation of wave forces on the displaced position of the structure introduces a steady offset component in the structural response. This is valid for either deterministically or stochastically described wave fields. Several parameter studies are conducted. Furthermore, reliable approximate analytical deterministic and stochastic solution techniques are developed which conform to and, in fact, predict the conclusions drawn from the results of the numerical studies.


Author(s):  
Bing Tai ◽  
Yuxiang Ma ◽  
Guohai Dong ◽  
Marc Perlin

Solitary waves can evolve into plunging breakers during shoaling, inducing high wave loads on coastal structures. Meanwhile, plunging waves propagate with rapid spatial-temporal variations both in wave geometry and wave kinematics, causing varying forces on structures for different breaking stages (Chan et al., 1995). Although there have been numerous experiments for wave forces on cylinders, to our knowledge no experiments have studied the forces at different breaking stages of a plunging solitary wave. Thus, in our study, experiments are conducted to investigate the force due to a plunging solitary wave impacting a circular cylinder as a function of the wave's phase. Due to these forces, as expected structural responses are induced (Paulsen et al., 2019); to eliminate the effect of the structural response, the equation of motion is proposed to facilitate extracting only the isolated hydrodynamic forces.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/P07Cdlnxe7s


Author(s):  
Osamu Saijo ◽  
Hiroaki Eto ◽  
Koichi Maruyoshi

Dynamic response analysis of a floating artificial base-building due to wave forces was studied, which structural system was named as a hybrid structural system. It was assumed to be constructed by the combination of elastic plate and framed structure. The hybrid structure system enabled the matrix size to reduce in FEM analysis, and the improvement of the calculation efficiency was succeeded. The developed calculation tool made it possible to examine the dynamic characteristic of the building on the floating base under the various wave conditions. The natural frequency analysis and the structural response analysis were capable, besides the evaluation of habitability in relation with oscillation caused by wave motion became possible using the diagram of our result of the research.


Author(s):  
Wen Zhang ◽  
Wenliang Wang ◽  
Hao Wang ◽  
Jiong Tang

A method for dynamic analysis of flexible bladed-disk/shaft coupled systems is presented in this paper. Being independant substructures first, the rigid-disk/shaft and each of the bladed-disk assemblies are analyzed separately in a centrifugal force field by means of the finite element method. Then through a modal synthesis approach the equation of motion for the integral system is derived. In the vibration analysis of the rotating bladed-disk substructure, the geometrically nonlinear deformation is taken into account and the rotationally periodic symmetry is utilized to condense the degrees of freedom into one sector. The final equation of motion for the coupled system involves the degrees of freedom of the shaft and those of only one sector of each of the bladed-disks, thereby reducing the computer storage. Some computational and experimental results are given.


Author(s):  
Christophe Cochet ◽  
Ronald W. Yeung

The wave-energy absorber being developed at UC Berkeley is modeled as a moored compound cylinder, with an outer cylinder sliding along a tension-tethered inner cylinder. With rigid-body dynamics, it is first shown that the surge and pitch degrees of freedom are decoupled from the heave motion. The heaving motion of the outer cylinder is analyzed and its geometric proportions (radii and drafts ratios) are optimized for wave-energy extraction. Earlier works of Yeung [1] and Chau and Yeung [2,3] are used in the present heave-motion study. The coupled surge-pitch motion can be solved and can provide the contact forces between the cylinders. The concept of capture width is used to characterize the energy extraction: its maximization leads to optimal energy extraction. The methodology presented provides the optimal geometry in terms of non-dimensional proportions of the device. It is found that a smaller radius and deeper draft for the outer cylinder will lead to a larger capture width and larger resulting motion.


Author(s):  
V Domala ◽  
R Sharma

This paper presents the design and development of an efficient modular ‘Computer Simulation Model (CSM)’ for response analysis of a moored semi-submersible. The computer simulation model is designed in two split models (i.e. computational and experimental models) and each of these models consists of various modules. The modules are developed from basic governing equations related to motion and modules are integrated and we aim for a seamless integration. The moored semi-submersible is represented mathematically as six degrees of freedom dynamic system and the coupling effects between the structure and mooring lines are considered. The basic geometric configuration of semi- submersible is modelled and analyzed for stability computations in MS-Excel*TM and then the basic governing equations related to motion are modelled mathematically in a module and solved numerically with Ansys-AQWA**TM. The computational model is validated and verified with some available experimental results. The CSM is utilized to study the surge and sway responses with respect to the horizontal range of mooring lines and our results show good validation with the existing experimental results. Our presented results show that the fibre wires have minimum steady state response in surge and sway degrees of freedom as compared with the steel wires. However, they have large drift as compared with steel wires. Finally, we show that the computer simulation model can help in detailed analysis of responses and results can be utilized for design and development of new age semi-submersibles for optimum performances for a given set of parameters.


2021 ◽  
Vol 22 ◽  
pp. 32
Author(s):  
Agathe Reille ◽  
Victor Champaney ◽  
Fatima Daim ◽  
Yves Tourbier ◽  
Nicolas Hascoet ◽  
...  

Solving mechanical problems in large structures with rich localized behaviors remains a challenging issue despite the enormous advances in numerical procedures and computational performance. In particular, these localized behaviors need for extremely fine descriptions, and this has an associated impact in the number of degrees of freedom from one side, and the decrease of the time step employed in usual explicit time integrations, whose stability scales with the size of the smallest element involved in the mesh. In the present work we propose a data-driven technique for learning the rich behavior of a local patch and integrate it into a standard coarser description at the structure level. Thus, localized behaviors impact the global structural response without needing an explicit description of that fine scale behaviors.


1964 ◽  
Vol 1 (9) ◽  
pp. 29
Author(s):  
William S. Gaither ◽  
David P. Billington

This paper is addressed to the problem of structural behavior in an offshore environment, and the application of a more rigorous analysis for time-dependent forces than is currently used. Design of pile supported structures subjected to wave forces has, in the past, been treated in two parts; (1) a static analysis based on the loading of a single wave, and (2) a dynamic analysis which sought to determine the resonant frequency by assuming that the structure could be approximated as a single-degree-of-freedom system. (Ref. 4 and 6) The behavior of these structures would be better understood if the dynamic nature of the loading and the many degrees of freedom of the system were included. A structure which is built in the open ocean is subjected to periodic forces due to wind, waves, floating objects, and due occasionally to machinery mounted on the structure. To resist motion, the structure relies on the stiffness of the elements from which it is built and the restraints of the ocean bottom into which the supporting legs are driven.


Sign in / Sign up

Export Citation Format

Share Document