Automated generation of turbulence shell models by the methods of computer algebra

Author(s):  
Глеб Михайлович Водинчар ◽  
Любовь Константиновна Фещенко

Описана разработанная методика генерации уравнений каскадных моделей турбулентности с помощью систем компьютерной алгебры. Методика позволяет варьировать размер масштабной нелокальности модели, вид квадратичных законов сохранения и спектральных законов, знаменатель геометрической прогрессии масштабов. Ее использование позволяет быстро и безошибочно генерировать целые классы моделей. Может использоваться для разработки каскадных моделей гидродинамических, магнитогидродинамических и конвективных турбулентных систем. There is a great variety of shell turbulence models. Such models reproduce certain characteristics of turbulence. A model that could reproduce all turbulence regimes does not exist at the moment. Information about a particular model is contained in a set of persistent quantities, which are some quadratic forms of turbulent fields. These quadratic forms should be formal analogs of the exact conserved quantities. It is important to note that the main idea of Shell models presupposes a refusal to describe the geometric structure of movements. At the same time, it is well known that turbulent processes in spaces of two and three dimensions behave differently. Therefore, the provision of certain combinations of conserved quantities allows indirect introducing into the shell model the information about the dimension of the physical space in which the turbulent process develops. Purpose. The aim of this work was to create software tools that would quickly generate classes of models that satisfy one or another set of conservation laws. The choice of a specific model within these classes can then be specified using additional physical considerations, for example, the existence of a given probability distribution for the interaction of certain shells. Methods. The developed technique for generating equations of shell turbulence models is carried out using symbolic computation systems (computer algebra systems - CAS). Note that symbolic packages are used not for studying ready-made shell models, but for the automated generation of the equations of these models themselves. The technique allows varying the value of the scale nonlocality of the model, the form of the quadratic conservation laws and spectral laws, the denominator of the geometric progression of scales. It allows quickly and accurately generating the entire set of classes of the models. It can be used to develop shell models of hydrodynamic, magnetohydrodynamic and convective turbulent systems. Findings. It seems that the proposed technique will be useful for studying the properties of turbulence in the framework of cascade models

2019 ◽  
Vol 127 ◽  
pp. 02004
Author(s):  
Liubov Feshchenko ◽  
Gleb Vodinchar

The technique for automatic constructing of shell models of turbulence has been developed. The compilation of a model equations and its exactly solution is implemented using computer algebra (symbolic calculation) systems. The technique allows one to vary the scaling nonlocality of nonlinear interaction, form of expressions for conservation laws in models, and the form of stationary solutions with power distributions to scales.


2020 ◽  
Vol 196 ◽  
pp. 02008
Author(s):  
Liubov Feshchenko ◽  
Gleb Vodinchar

The paper describes the developed by authors technique for construct-ing complex shell models of turbulence. The compilation of the equa-tions of this model and its exactly solution are implemented using by computer algebra system. The technique allows one to vary the sizes of nonlocality of nonlinear interaction in the space of scales, expressions for shell analogues of conservation laws, and the nature of stationary solutions with different power distribution.


2016 ◽  
pp. 4437-4439
Author(s):  
Adil Jhangeer ◽  
Fahad Al-Mufadi

In this paper, conserved quantities are computed for a class of evolution equation by using the partial Noether approach [2]. The partial Lagrangian approach is applied to the considered equation, infinite many conservation laws are obtained depending on the coefficients of equation for each n. These results give potential systems for the family of considered equation, which are further helpful to compute the exact solutions.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter defines the conserved quantities associated with an isolated dynamical system, that is, the quantities which remain constant during the motion of the system. The law of momentum conservation follows directly from Newton’s third law. The superposition principle for forces allows Newton’s law of motion for a body Pa acted on by other bodies Pa′ in an inertial Cartesian frame S. The law of angular momentum conservation holds if the forces acting on the elements of the system depend only on the separation of the elements. Finally, the conservation of total energy requires in addition that the forces be derivable from a potential.


2021 ◽  
Vol 254 ◽  
pp. 02006
Author(s):  
Liubov Feshchenko ◽  
Gleb Vodinchar

The paper describes a technology for the automated compilation of equations for shell models of turbulence in the computer algebra system Maple. A general form of equations for the coefficients of nonlinear interactions is given, which will ensure that the required combination of quadratic invariants and power-law solutions is fulfilled in the model. Described the codes for the Maple system allowing to generate and solve systems of equations for the coefficients. The proposed technology allows you to quickly and accurately generate classes of shell models with the desired properties.


1987 ◽  
Vol 109 (3) ◽  
pp. 663-670 ◽  
Author(s):  
M.-C. Lai ◽  
G. M. Faeth

Weakly buoyant turbulent adiabatic wall plumes along vertical surfaces were studied. Instantaneous velocities and concentrations were measured using laser-Doppler anemometry and laser-induced fluorescence, Earlier work reported mean properties and their comparison with predictions of simplified mixing-length and k–ε–g turbulence models. Velocity and concentration fluctuations and their correlations are reported in the present paper. The results show considerable deficiencies in the simplified models concerning turbulence properties, e.g., anisotropy of turbulence properties, lack of coincidence of maximum velocity and zero Reynolds stress points, and variability of the turbulence Prandtl/Schmidt number. Density/velocity correlations were found which provide a means of estimating differences between Reynolds and Favre averages, effects of turbulence fluxes on conserved quantities, and effects of buoyancy/turbulence interactions on turbulence properties.


Author(s):  
Przemyslaw Prusinkiewicz ◽  
Deborah R. Fowler

1953 ◽  
Vol 5 ◽  
pp. 261-270 ◽  
Author(s):  
Harvey Cohn

The consideration of relative extrema to correspond to the absolute extremum which is the critical lattice has been going on for some time. As far back as 1873, Korkine and Zolotareff [6] worked with the ellipsoid in hyperspace (i.e., with quadratic forms), and later Minkowski [8] worked with a general convex body in two or three dimensions. They showed how to find critical lattices by selection from among a finite number of relative extrema. They were aided by the long-recognized premise that only a finite number of lattice points can enter into consideration [1] when one deals with lattices “admissible to convex bodies.”


2017 ◽  
Vol 26 (05) ◽  
pp. 1741006 ◽  
Author(s):  
Bismah Jamil ◽  
Tooba Feroze

In this paper, we present a complete list of spherically symmetric nonstatic spacetimes along with the generators of all Noether symmetries of the geodetic Lagrangian for such metrics. Moreover, physical and geometrical interpretations of the conserved quantities (conservation laws) corresponding to each Noether symmetry are also given.


Sign in / Sign up

Export Citation Format

Share Document