scholarly journals Calculation of vertical displacement of the earth surface in the “Vostochny” open pit using radar data

Author(s):  
L.S. Mikov ◽  
S.E. Popov ◽  
V.P. Potapov

The paper deals with the issues of assessment of the condition and changes in the land surface on the territory of the Vostochny open pit (Kemerovo region). The application of the multi-pass series of Sentinel-1 satellite radar data using the Small Baseline Subset (SBaS) method to determine the Earth surface displacement dynamics using constructed vertical displacement maps is demonstrated.

2020 ◽  
Vol 223 ◽  
pp. 03010
Author(s):  
Leonid Mikov ◽  
Semion Popov

The paper deals with the issues of assessment of the condition and changes in the land surface on the territory of the Kiizassky open pit (Kemerovo region) because of the landslide that occurred in June 2019. The application of the multi-pass series of Sentinel-1 satellite radar data using the Small Baseline Subset (SBaS) method to determine the Earth surface displacement dynamics using constructed vertical displacement maps is demonstrated..


1962 ◽  
Vol 52 (5) ◽  
pp. 1007-1016
Author(s):  
B. Carder ◽  
J. Hefferman ◽  
D. Barnes

abstract Photographic measurements of the earth-surface displacement were made on the gnome event, an underground nuclear detonation near Carlsbad, New Mexico, November 1961. One long range and three short range photo stations were used to provide complementary coverage. Motionless inertia weights were measured against graduated targets rigidly anchored to the surface. The experiment is described in detail including target/weight arrangement, camera specifications, and photo station locations in relation to Surface Zero. Analysis of results from 6 films from close-in stations and one film from the long range station are reported. The peak displacement measured was slightly greater than six feet at a location 106 feet from surface zero.


2018 ◽  
Vol 10 (12) ◽  
pp. 2025 ◽  
Author(s):  
Lianhuan Wei ◽  
Yun Zhang ◽  
Zhanguo Zhao ◽  
Xiaoyu Zhong ◽  
Shanjun Liu ◽  
...  

The mining waste of open pit mines is usually piled-up in dump sites, making a man-made hill more than tens of meters high. Because of the loose structure of the dump sites, landslides or debris flow may occur after heavy rainfall, threatening local lives and properties. Therefore, dump stability analysis is crucial for ensuring local safety. In this paper, a collaborative stability analysis based on multiple remote sensing technologies was innovatively conducted at the Xudonggou dump of the Anqian iron mine. A small baseline subset (SBAS) analysis was used to derive the spatial and temporal distributions of displacements in the line-of sight (LOS) over the whole study area. The deformation in LOS is translated to the slope direction based on an assumption that displacements only occur parallel to the slope surface. Infrared Thermography (IRT) technology was used to detect weak aquifer layers located at the toe of possible landslide bodies. Then, numerical simulations based on the limit equilibrium method were conducted to calculate the factor of safety for three profiles located on the dump site. The results, emerging from multiple remote sensing technologies, were very consistent and, eventually, the landslide hazard zone of the Xudonggou dump site was outlined.


Author(s):  
V.N. Tyupin ◽  

At present, to ensure seismic safety in massive explosions, the analytical dependence of the determination of the vibration velocity of M.A. Sadovsky rock mass is mainly used. This dependence is widely used in the creation of seismic-safe technologies for mineral deposits open-pit and underground mining. However, scientific research and production experience showed that the rate of oscillation depends on the energy parameters of the explosive, the diameter and length of its charges, the number of simultaneously exploded charges, the number of deceleration stages, the deceleration interval, etc. The purpose of this article is to predict the speed fluctuations of the massif on the earth surface when conducting the underground explosions depending on the parameters of large-scale explosions and physical-technical properties of the rock masses in the areas of explosion of the protected object. The formulas for calculating the velocity of rock mass on the earth surface during large-scale explosions in the underground conditions are substantiated and presented. The formulas were used for calculating the vibration velocities of the rock mass on the earth surface in accordance with the parameters of drilling and blasting operations during large-scale explosions in the mines of GK VostGOK. Comparison of theoretical (calculated) data and the results of actual measurements indicates their convergence. By changing the controlled parameters in the calculation formulas, it is possible to quantitatively reduce the seismic effect of a large-scale explosions on the protected objects. Further research will be aimed at studying the influence of tectonic faults, artificial contour crevices, filling massif or mined-out space on the rate of seismic-explosive vibrations during blasting operations in the mines. The research results can be used in the preparation of rules for conducting large-scale explosions at the underground mining.


2021 ◽  
Vol 13 (21) ◽  
pp. 4253
Author(s):  
Lisa Beccaro ◽  
Cristiano Tolomei ◽  
Roberto Gianardi ◽  
Vincenzo Sepe ◽  
Marina Bisson ◽  
...  

Volcanic islands are often affected by ground displacement such as slope instability, due to their peculiar morphology. This is the case of Ischia Island (Naples, Italy) dominated by the Mt. Epomeo (787 m a.s.l.), a volcano-tectonic horst located in the central portion of the island. This study aims to follow a long temporal evolution of ground deformations on the island through the interferometric analysis of satellite SAR data. Different datasets, acquired during Envisat, COSMO-SkyMed and Sentinel-1 satellite missions, are for the first time processed in order to obtain the island ground deformations during a time interval spanning 17 years, from November 2002 to December 2019. In detail, the multitemporal differential interferometry technique, named small baseline subset, is applied to produce the ground displacement maps and the associated displacement time series. The results, validated through the analysis and the comparison with a set of GPS measurements, show that the northwestern side of Mt. Epomeo is the sector of the island characterized by the highest subsidence movements (maximum vertical displacement of 218 mm) with velocities ranging from 10 to 20 mm/yr. Finally, the displacement time series allow us to correlate the measured ground deformations with the seismic swarm started with the Mw 3.9 earthquake that occurred on 21 August 2017. Such correlations highlight an acceleration of the ground, following the mainshock, characterized by a subsidence displacement rate of 0.12 mm/day that returned to pre-earthquake levels (0.03 mm/day) after 6 months from the event.


Geosciences ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 179
Author(s):  
Marek Zygmunt ◽  
Stefan Cacoń ◽  
Wojciech Milczarek ◽  
Józef Sanecki ◽  
Andrzej Piotrowski ◽  
...  

The research area is located in north-western Poland. It is the city of Szczecin with a particular emphasis on the Międzyodrze islands. The area of the EcoGenerator Waste Disposal Plant is part of the research area. The analysis of the geological structure of the subsurface layer of Earth’s crust within Szczecin, was carried out with particular emphasis on the EcoGenerator Waste Disposal Plant. The analysis of height changes of the benchmarks, was based on archival materials measured in two campaigns. A detailed recognition of the geological structure in connection with the analysis of changes in the height of the benchmarks was important. This enabled stable benchmarks to be located in several areas of Szczecin. They formed the basis for reliable monitoring of surface deformations of organic and existing sediments within the EkoGenerator Plant. The application of an appropriate three segment control and measurement system. In the area around the EcoGenerator Plant, vertical movements of the area were observed using the InSAR Small Baseline Subset Method. An InSAR analysis is only used here for very broad identification of the moving area. The radar data came from Sentinel 1 A and 1 B satellites. A total of 129 images from 15.11.2014 to 28.07.2019 were used.The results of the analyses conducted, form the basis for discussion and act as a summary of the considerations in this paper.


2021 ◽  
Author(s):  
Seo-Woo Park ◽  
Sang-Hoon Hong

<p>Land subsidence is often occurred by compaction of alluvial sediments due to groundwater extraction and threatens invaluable lives and properties. Space-based interferometric Synthetic Aperture Radar (SAR) observation has been widely used to estimate surface displacement precisely. Especially, Small BAseline Subset (SBAS) technique with SAR Interferometry (InSAR) could serve to monitor a time-series of the land subsidence. In this study, the SBAS with L-band ALOS PALSAR and C-band Sentinel-1 observations have been applied to investigate the land subsidence in Noksan reclaimed land, Busan, South Korea. The average velocity showing the largest displacement is -3.40 cm/year from ALOS PALSAR and -2.17 cm/year with Sentinel-1 dataset at the line of sight (LOS) direction. An annual subsidence rate of -2.77 cm/year was estimated assuming that the surface has been deformed linearly for the data acquisition period.</p>


2018 ◽  
pp. 44-49

Identificación de regiones expuestas a bajas temperaturas en el Perú usando imágenes de la temperatura de la superficie del suelo procedente de sensor MODIS/Aqua Jaime Aguilar-Lome y Joel Rojas Acuña Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Lima, Perú. Recibido el 19 de junio del 2018. Aceptado el 5 de julio del 2018 Resumen La temperatura de la superficie terrestre (LST, siglas en inglés) es una variable clave en las interacciones y los flujos de energía entre la superficie de la Tierra y la atmósfera. Se ha analizado la LST MODIS nocturna a una resolución espacial de 1 km en el periodo 2003-2017 (junio-agosto) sobre el Perú, para identificar las regiones expuestas a bajas temperaturas. Nuestro resultado muestra que las regiones por debajo de los 0°C se encuentran por encima de 3500 msnm (en promedio). A demás la LST nocturna promedio mensual está correlacionado con la temperatura mínima media mensual del aire (R=0.96, N=763) y la topografía influye significativamente en la variabilidad de la LST. Descriptores: LST MODIS, Heladas Radiativas, Andes Abstract Land Surface Temperature (LST) is a key variable in the interactions and energy fluxes between the Earth surface and the atmosphere. The MODIS LST nighttime at spatial resolution of 1 km was analyzed during the period 2003-2017 (June-August) over Peru to identify regions exposed to low temperatures. Our result shows that the regions below 0°C are above 3500 masl (in average). In addition, the mean monthly nighttime LST is correlated with the mean monthly minimum air temperature (R = 0.96, N = 763) and the topography significantly influences the variability of LST. Keywords: MODIS LST, Radiation Frost, Andes


Author(s):  
A. Tavakkoli ◽  
M. Dehghani

The area of Kahrood is a small village located in the north-east of Damavand in the center of the Alborz range, north of Iran. Kahrood is located in Haraz valley exactly below the land slide area. To monitor the temporal evolution of the landslide, the conventional small baseline subset (SBAS), a radar differential Synthetic Aperture Radar interferometry (DInSAR) algorithm is used for time-series analysis. 19 Interferograms characterized by small spatial and temporal baselines are generated using 14 images. In order to remove the topographic effects, a digital elevation model from the Shuttle Radar Topography Mission (SRTM), with a spatial resolution of 90 m, is used. In the time-series analysis the first image was selected as the temporal reference. In the least squares solution, in order to increase the number of observational equation as well as decrease the temporal fluctuations due to atmospheric and unwrapping errors, a smoothing constraint is incorporated into the inversion problem. We divide the deformation time-series into two main parts. The maximum deformation rate estimated from the first part of the time-series is estimated as 3.3 cm within the landslide area. According to the time series results the land surface is moving away from the satellite. The second part of the deformation time-series showed a small landslide rate up to 0.7 cm. According to the time series results the land surface is moving toward the satellite. The deformation is estimated along the Mean line of sight (LOS). Considering the whole time series, the maximum LOS deformation rate is estimated as 14 cm.


Sign in / Sign up

Export Citation Format

Share Document