Intracellular oxidative stress in granulose cells impact on ART success in reduced ovarian reserve

Author(s):  
Marianna Santonastaso
2016 ◽  
Vol 32 ◽  
pp. S1
Author(s):  
Rocio Nuñez Calonge ◽  
Susana Cortes ◽  
Leonor Ortega ◽  
Lisa Rancan ◽  
Elena Vara ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2324
Author(s):  
Shichao Guo ◽  
Jinyu Yang ◽  
Jianpeng Qin ◽  
Izhar Hyder Qazi ◽  
Bo Pan ◽  
...  

Previously it was reported that melatonin could mitigate oxidative stress caused by oocyte cryopreservation; however, the underlying molecular mechanisms which cause this remain unclear. The objective was to explore whether melatonin could reduce oxidative stress during in vitro maturation of vitrified-warmed mouse germinal vesicle (GV) oocytes through the Nrf2 signaling pathway or its receptors. During in vitro maturation of vitrified-warmed mouse GV oocytes, there were decreases (p < 0.05) in the development rates of metaphase I (MI) oocytes and metaphase II (MII) and spindle morphology grades; increases (p < 0.05) in the reactive oxygen species (ROS) levels; and decreases (p < 0.05) in expressions of Nrf2 signaling pathway-related genes (Nrf2, SOD1) and proteins (Nrf2, HO-1). However, adding 10−7 mol/L melatonin to both the warming solution and maturation solutions improved (p < 0.05) these indicators. When the Nrf2 protein was specifically inhibited by Brusatol, melatonin did not increase development rates, spindle morphology grades, genes, or protein expressions, nor did it reduce vitrification-induced intracellular oxidative stress in GV oocytes during in vitro maturation. In addition, when melatonin receptors were inhibited by luzindole, the ability of melatonin to scavenge intracellular ROS was decreased, and the expressions of genes (Nrf2, SOD1) and proteins (Nrf2, HO-1) were not restored to control levels. Therefore, we concluded that 10−7 mol/L melatonin acted on the Nrf2 signaling pathway through its receptors to regulate the expression of genes (Nrf2, SOD1) and proteins (Nrf2, HO-1), and mitigate intracellular oxidative stress, thereby enhancing in vitro development of vitrified-warmed mouse GV oocytes.


The Analyst ◽  
2021 ◽  
Author(s):  
Lu Gao ◽  
Jiadi Sun ◽  
Liping Wang ◽  
Qigao Fan ◽  
Gaowen Zhu ◽  
...  

Single-cell electrochemical sensor is used in the local selective detection of living cells because of its high spatial–temporal resolution and sensitivity, as well as its ability to obtain comprehensive cellular physiological states and processes.


2012 ◽  
Vol 53 ◽  
pp. S49 ◽  
Author(s):  
H.K.I. Dias ◽  
M. Milward ◽  
M. Grant ◽  
I.L.C. Chapple ◽  
H.R. Griffiths⁎

2020 ◽  
Vol 2020 (4) ◽  
pp. 10-18
Author(s):  
Dmitriy Gildikov

In the review article, from the modern standpoint, oxidative stress is considered as a universal pathophysiological mechanism of the vast majority of diseases in animals. A brief review of the publication activity in the world on this topic; the significance of reactive oxygen species in the physiology and development of intracellular oxidative stress, the role of etiological factors that initiate their hyperproduction are presented, as well the methods of detecting oxidative stress are characterizited. General concepts of the antioxidant system of the animal body are examined, and the pathophysiological targets of oxidative stress in animals are generalized.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Wen Zou ◽  
Zehao Wang ◽  
Jing Xia ◽  
Jing Yang

Abstract Background Antioxidant/oxidant imbalance has been reported to be related to diminished ovarian reserve (DOR). Vitamin A (retinol), a kind of antioxidant, plays a role in restoring ovarian oxidative damage, while C-reactive protein (CRP) is the classical marker of oxidative stress and has recently been identified as an independent variable that is associated with low anti-Mullerian hormone (AMH) levels in young women with DOR. Additionally, retinol binding protein 4 (RBP4) can be considered a substitute for retinol in healthy, nonobese women. The study aim was to determine the relationship between serum RBP4, high sensitivity C-reactive protein (hs-CRP) concentrations and ovarian reserve in nonobese DOR patients. Methods This study included 24 DOR women and 48 normal ovarian reserve (NOR) women from the reproductive medical center of Renmin Hospital of Wuhan University. The serum RBP4 and high-sensitivity CRP (hs-CRP) levels were measured with ELISA kits. Results RBP4 levels (20,648.36 ± 5475.16 ng/ml vs 23,986.48 ± 5995.64 ng/ml, p = 0.025) were decreased, and hs-CRP levels (695.08 ± 1090.19 ng/ml vs 364.32 ± 786.29 ng/ml, p = 0.012) were increased in the DOR group. Serum RBP4 was positively related to AMH (Pearson r = 0.518, p = 0.000), while hs-CRP was negatively correlated with AMH (Spearman r = − 0.345, p = 0.005). after adjustments were made for the covariables, multiple line regression analysis showed that positive association between RBP4 and AMH still existed (β = 0.450, p < 0.001). Conclusion Decreased serum RBP4 levels and increased serum hs-CRP were observed in DOR patients in our study, and the strong correlation between RBP4 and AMH supports the notion that oxidative stress plays a role in DOR, and that appropriate levels of antioxidant vitamin A may be protective against ovarian reserve dysfunction.


Sign in / Sign up

Export Citation Format

Share Document