Fabrication of Hierarchical Polymeric Thin Films by Spin Coating toward Production of Amorphous Solid Dispersion for Buccal Drug Delivery System

Author(s):  
Esra'a Albarahmieh
Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 344
Author(s):  
Jong-Hwa Lee ◽  
Hyeong Sik Jeong ◽  
Jong-Woo Jeong ◽  
Tae-Sung Koo ◽  
Do-Kyun Kim ◽  
...  

Rivaroxaban (RXB), a novel oral anticoagulant that directly inhibits factor Xa, is a poorly soluble drug belonging to Biopharmaceutics Classification System (BCS) class II. In this study, a hot-melt extruded amorphous solid dispersion (HME-ASD) containing RXB is prepared by changing the drug:polymer ratio (Polyvinylpyrrolidione-vinyl acetate 64, 1:1–1:4) and barrel temperature (200–240 °C), fixed at 20% of Cremophor® RH 40 and 15 rpm of the screw speed, using the hot-melt extruding technique. This study evaluates the solubility, dissolution behavior, and bioavailability for application to oral drug delivery and optimizes the formulation of rivaroxaban amorphous solid dispersion (RXB-ASD). Based on a central composite design, optimized RXB-ASD (PVP VA 64 ratio 1:4.1, barrel temperature 216.1 °C, Cremophor® RH 40 20%, screw speed 15 rpm) showed satisfactory results for dependent variables. An in vitro drug dissolution study exhibited relatively high dissolution in four media and achieved around an 80% cumulative drug release in 120 min. Optimized RXB-ASD was stable under the accelerated condition for three months without a change in crystallinity and the dissolution rate. A pharmacokinetic study of RXB-ASD in rats showed that the absorption was markedly increased in terms of rate and amount, i.e., the systemic exposure values, compared to raw RXB powder. These results showed the application of quality by design (QbD) in the formulation development of hot-melt extruded RXB-ASD, which can be used as an oral drug delivery system by increasing the dissolution rate and bioavailability.


ChemInform ◽  
2013 ◽  
Vol 44 (27) ◽  
pp. no-no
Author(s):  
Devender Singh Rathore ◽  
Reeta Rani Thakur ◽  
Sonia Narwal

Author(s):  
SIRIPORN KITTIWISUT ◽  
PAKORN KRAISIT

Objective: This study aimed to characterize the physicochemical properties, including pH, zeta potential, and particle size of propranolol-loaded nanoparticles that were incorporated into a buccal transmucosal drug-delivery system. Methods: An ionotropic gelation technique was used to formulate propranolol-loaded chitosan nanoparticles. Chitosan used as the nanoparticle base, using tripolyphosphate (TPP) as a cross-linking agent. The effects on nanoparticle physical properties, including pH, zeta potential, and particle size were examined when various chitosan [0.150-0.300 % (w/v)] and propranolol contents (0-40 mg) were used during the preparation. The effects of using chitosan solutions with different pH values on nanoparticle properties were also determined. Results: The pH values of all nanoparticles ranged between 4.14–4.55. The zeta potentials of the prepared nanoparticles ranged between 22.6–52.6 mV, with positive charges. The nanoparticle sizes ranged from 107–140 nm, which are within the range of suitable particle sizes for transmucosal preparations. Conclusion: The pH values, zeta potentials, and particle sizes of the nanoparticle formulations were influenced by the concentrations of chitosan and propranolol and by the pH of the initial chitosan solution. The relationships between nanoparticle properties and all factors primarily depended on the ionic charges of the components, especially chitosan. Our study provides beneficial physicochemical knowledge for the further development of chitosan-based nanoparticles containing propranolol for buccal drug delivery systems.


2012 ◽  
Vol 13 (2) ◽  
pp. 713-722 ◽  
Author(s):  
Po-Chang Chiang ◽  
Yingqing Ran ◽  
Kang-Jye Chou ◽  
Yong Cui ◽  
Amy Sambrone ◽  
...  

Author(s):  
M. N. L. Aishwarya ◽  
V. Prudhvi Raj ◽  
Subhashis Debnath ◽  
M. Niranjan Babu

Sign in / Sign up

Export Citation Format

Share Document