Incidental identification of copy number variations (CNV) in patients during preimplantation genetic diagnosis (PGD) – clinical implications and counseling issues when encountering secondary findings

Author(s):  
Erin Armenti
2015 ◽  
Vol 30 (3) ◽  
pp. 294 ◽  
Author(s):  
Seon-Hee Yim ◽  
Seung-Hyun Jung ◽  
Boram Chung ◽  
Yeun-Jun Chung

2016 ◽  
Vol 89 (6) ◽  
pp. 708-718 ◽  
Author(s):  
V. Oikonomakis ◽  
K. Kosma ◽  
A. Mitrakos ◽  
C. Sofocleous ◽  
P. Pervanidou ◽  
...  

2021 ◽  
Author(s):  
M. Anwar Iqbal ◽  
Ulrich Broeckel ◽  
Brynn Levy ◽  
Steven Skinner ◽  
Nikhil Shri Sahajpal ◽  
...  

Background The standard of care (SOC) cytogenetic testing methods, such as chromosomal microarray (CMA) and Fragile-X syndrome (FXS) testing, have been employed for the detection of copy number variations (CNVs), and tandem repeat expansions/contractions that contribute towards a sizable portion of genetic abnormalities in constitutional disorders. However, CMA is unable to detect balanced structural variations (SVs) or determine the precise location or orientation of copy number gains. Karyotyping, albeit with lower resolution, has been used for the detection of balanced SVs. Other molecular methods such as PCR and Southern blotting, either simultaneously or in a tiered fashion have been used for FXS testing, adding time, cost, and complexity to reach an accurate diagnosis in affected individuals. Optical genome mapping (OGM), innovative technology in the cytogenomics arena enables a direct, high-resolution view of ultra-long DNA molecules (>150 kbp), which are then assembled de novo to detect germline SVs ranging from 500 bp insertions and deletions to complex chromosomal rearrangements. The purpose of this study was to evaluate the performance of OGM in comparison to the current SOC methods and assess the intra- and inter-site reproducibility of the OGM technique. We report the largest retrospective dataset to date on OGM performed at five laboratories (multi-site) to assess the robustness, QC performance, and analytical validation (multi-operator, and multi-instrument) in detecting SVs and CNVs associated with constitutional disorders compared to SOC technologies. Methods This multi-center IRB-approved, double-blinded, study includes a total of 331 independent flow cells run (including replicates), representing 202 unique retrospective samples, including but not limited to pediatric-onset neurodevelopmental disorders. This study included affected individuals with either a known genetic abnormality or no known genetic diagnosis. Control samples (n=42) were also included. Briefly, OGM was performed on either peripheral blood samples or cell lines using the Saphyr system. The OGM assay results were compared to the human reference genome (GRCh38) to detect different types of SVs (CNV, insertions, inversions, translocations). A unique coverage-based CNV calling algorithm was also used to complement the SV calls. Analysis of heterozygous SVs was performed to assess the absence of heterozygosity (AOH) regions in the genome. For specific clinical indications of FSHD1 and FXS, the EnFocus FXS and FSHD1 tools were used to generate the region-specific reports. OGM data was analyzed and visualized using Access software (version 1.7), where the SVs were filtered using an OGM specific internal control database. The samples were analyzed by laboratory analysts at each site in a blinded fashion using ACMG guidelines for SV interpretation and further reviewed by expert geneticists to assess concordance with SOC testing results. Results Of the first 331 samples run between five sites, 99.1% of sample runs were completed successfully. Of the 331 datasets, 219 were assessed for concordance by the time of this publication; these were samples that harbored known variants, of which 214/219 were detected by OGM resulting in a concordance of 97.7% compared to SOC testing. 47 samples were also run in intra- and inter-site replicate and showed 100% concordance for pathogenic CNVs and SVs and 100% concordance for pathogenic FMR1 repeat expansions. Conclusion The results from this study demonstrate the potential of OGM as an alternative to existing SOC methods in detecting SVs of clinical significance in constitutional postnatal genetic disorders. The outstanding technical performance of OGM across multiple sites demonstrates the robustness and reproducibility of the OGM technique as a rapid cytogenomics testing tool. Notably, OGM detected all classes of SVs in a single assay, which allows for a faster result in cases with diverse and heterogeneous clinical presentations. OGM demonstrated 100% concordance for pathogenic variants previously identified including FMR1 repeat expansions (full mutation range), pathogenic D4Z4 repeat contractions (FSHD1 cases), aneuploidies, interstitial deletions, interstitial duplications, intragenic deletions, balanced translocations, and inversions. Based on our large dataset and high technical performance we recommend OGM as an alternative to the existing SOC tests for the rapid detection and diagnosis of postnatal constitutional disorders.


Author(s):  
Stephanie M. Robert ◽  
Shaurey Vetsa ◽  
Arushii Nadar ◽  
Sagar Vasandani ◽  
Mark W. Youngblood ◽  
...  

Abstract Introduction Meningiomas are generally considered “benign,” however, these tumors can demonstrate variability in behavior and a surprising aggressiveness with elevated rates of recurrence. The advancement of next-generation molecular technologies have led to the understanding of the genomic and epigenomic landscape of meningiomas and more recent correlations with clinical characteristics and behavior. Methods Based on a thorough review of recent peer-reviewed publications (PubMed) and edited texts, we provide a molecular overview of meningiomas with a focus on relevant clinical implications. Results The identification of specific somatic driver mutations has led to the classification of several major genomic subgroups, which account for more than 80% of sporadic meningiomas, and can be distinguished using noninvasive clinical variables to help guide management decisions. Other somatic genomic modifications, including non-coding alterations and copy number variations, have also been correlated with tumor characteristics. Furthermore, epigenomic modifications in meningiomas have recently been described, with DNA methylation being the most widely studied and potentially most clinically relevant. Based on these molecular insights, several clinical trials are currently underway in an effort to establish effective medical therapeutic options for meningioma. Conclusion As we enhance our multiomic understanding of meningiomas, our ability to care for patients with these tumors will continue to improve. Further biological insights will lead to additional progress in precision medicine for meningiomas.


2012 ◽  
Vol 20 (9) ◽  
pp. 938-944 ◽  
Author(s):  
Chris MJ van Uum ◽  
Servi JC Stevens ◽  
Joseph CFM Dreesen ◽  
Marion Drüsedau ◽  
Hubert J Smeets ◽  
...  

2014 ◽  
Author(s):  
Luwen Ning ◽  
Guan Wang ◽  
Zhoufang Li ◽  
Wen Hu ◽  
Qingming Hou ◽  
...  

Single-cell genomic analysis has grown rapidly in recent years and will find widespread applications in various fields of biology, including cancer biology, development, immunology, pre-implantation genetic diagnosis, and neurobiology. In this study, we amplified genomic DNA from individual hippocampal neurons using one of three single-cell DNA amplification methods (multiple annealing and looping-based amplification cycles (MALBAC), multiple displacement amplification (MDA), and GenomePlex whole genome amplification (WGA4)). We then systematically evaluated the genome coverage, GC-bias, reproducibility, and copy number variations among individual neurons. Our results showed that single-cell genome sequencing results obtained from the MALBAC and WGA4 methods are highly reproducible and have a high success rate. Chromosome-level and subchromosomal-level copy number variations among individual neurons can be detected.


2019 ◽  
Vol 21 (12) ◽  
pp. 2774-2780
Author(s):  
Nathalie Brison ◽  
Jazz Storms ◽  
Darine Villela ◽  
Kristl G. Claeys ◽  
Luc Dehaspe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document