scholarly journals Fast Gray Matter Acquisition T1 Inversion Recovery for Preoperative Planning of MR-guided Focused Ultrasound Thalamotomy in the Treatment of Essential Tremors: Preliminary Findings

Author(s):  
Emmanuel Obusez
SINERGI ◽  
2015 ◽  
Vol 19 (3) ◽  
pp. 206
Author(s):  
Nursama Heru Apriantoro ◽  
Christianni Christianni

MRI adalah bagian dari ilmu kedokteran untuk mediagnosa kelainan organ dengan memanfaatkan medan magnet dan pergerakan proton atom hidrogen. Salah satu pemeriksaan MRI adalah pemeriksaan brain. Pemeriksaan MRI brain dapat dilakukan T1 weighted image Spin Echo (T1 SE) atau T1 Fluid Attenuated Inversion Recovery (T1 FLAIR). Kajian dilakukan untuk menentukan perbedaan T1 SE dan T1 FLAIR dari segi citra berdasarkan nilai Rasio Signal terhadap Noise (SNR) dengan MRI GE Type Signa HD xt 1.5 Tesla. Penelitian menggunakan pendekatan kuantitatif.  20 pasien  telah diambil pada pemeriksaan MRI brain pada potongan axial, dengan parameter T1 SE potongan axial dengan parameter Time Repetition (TR) 700 ms, Time Echo (TE) 20 ms, Field of View (FOV) 240 mm, Slice Thickness 5,0 mm, Spacing 1,0 mm, Number of Excitations (NEX) 1, Phase 224, dan total slice 20. T1 FLAIR  parameter TR 3000 ms, TE 13,9 ms, TI 920 ms, FOV 240 mm, slice thickness 5,0 mm, spacing 1,0 mm,   NEX 1, phase 224, dan total slice 20. SNR dihitung pada anatomi brain meliputi CSF (Cerebro Spinal Fluid), White Matter dan Gray Matter. Hasil penelitian kedua sequence tersebut menunjukkan bahwa sequence T1 SE lebih baik daripada sequence T1 FLAIR.


2001 ◽  
Vol 1230 ◽  
pp. 1154-1155
Author(s):  
Nobuhiro Tsukamoto ◽  
Hideo Kumagai ◽  
Kiichiro Saitoh ◽  
Masahiko Monma ◽  
Yutaka Ando ◽  
...  

Author(s):  
Sally Mohamed Shaaban ◽  
Azza Elmongui Elmongui ◽  
Ahmed Abdel Khalek Abdel Razek ◽  
Tamer Mohamed Belal

Abstract Background Multiple sclerosis is a chronic inflammatory disease affecting both white and gray matters of the central nervous system. It has been approved that the degree of gray matter involvement is closely associated with the degree of physical disability and the extent of cognitive impairment. Thus, it is necessary to incorporate widely available simple methods for neurocognitive evaluation and gray matter detection in the periodic assessment of MS patients that will influence treatment decisions. Objectives To assess the correlation of cortical lesions of multiple sclerosis (MS) at double inversion recovery (DIR) with cognition screening scores Methods This study was conducted on 30 patients with MS with an average age of 31.3±13.6 years. All of them underwent MRI and clinical assessment with the calculation of Expanded Disability Status Scale (EDSS), Montreal Cognitive Assessment (MoCA), and Symbol Digit Modality Test (SDMT) scores. The image analysis was performed by 2 reviewers for cortical lesion number, shape, and subtypes, and total lesion load. Results Both MoCA and SDMT scales had a significant inverse correlation with cortical lesions number (r=− 0.68, − 0.72) respectively and total lesion load (r=− 0.53, − 0.65) respectively. Besides, there was a significant inverse correlation between the MoCA test, varied cortical subtypes: leukocortical, juxtacortical, and intracortical subtypes (r = − 0.63, − 0.56, − 0.52) respectively, and different cortical lesion shapes: oval, wedge, and curvilinear shaped (r = − 0.62, − 0.69, − 0.49) respectively. As well, the SDMT scale showed a significant inverse correlation with varied cortical subtypes: intracortical, leukocortical, and juxtacortical subtypes (r = − 0.63, − 0.61, − 0.57) respectively, and different cortical lesion shapes: oval, curvilinear, and wedge shaped (r = − 0.61, − 0.59, − 0.46) respectively. Interestingly, there was an excellent inter-observer correlation of cortical lesion number (r = 0.96), total lesion load (r = 0.95), subtypes of cortical lesion (r = 0.94), and cortical lesion shapes (r = 0.77). Conclusion We concluded that DIR can detect cortical lesions of MS, and MRI findings were well-correlated with cognitive dysfunction in these patients.


Radiology ◽  
2006 ◽  
Vol 241 (3) ◽  
pp. 873-879 ◽  
Author(s):  
Petra J. W. Pouwels ◽  
Joost P. A. Kuijer ◽  
John P. Mugler ◽  
Charles R. G. Guttmann ◽  
Frederik Barkhof

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yi Zhong ◽  
David Utriainen ◽  
Ying Wang ◽  
Yan Kang ◽  
E. Mark Haacke

White matter hyperintensities (WMH) seen on T2WI are a hallmark of multiple sclerosis (MS) as it indicates inflammation associated with the disease. Automatic detection of the WMH can be valuable in diagnosing and monitoring of treatment effectiveness. T2 fluid attenuated inversion recovery (FLAIR) MR images provided good contrast between the lesions and other tissue; however the signal intensity of gray matter tissue was close to the lesions in FLAIR images that may cause more false positives in the segment result. We developed and evaluated a tool for automated WMH detection only using high resolution 3D T2 fluid attenuated inversion recovery (FLAIR) MR images. We use a high spatial frequency suppression method to reduce the gray matter area signal intensity. We evaluate our method in 26 MS patients and 26 age matched health controls. The data from the automated algorithm showed good agreement with that from the manual segmentation. The linear correlation between these two approaches in comparing WMH volumes was found to beY=1.04X+1.74  (R2=0.96). The automated algorithm estimates the number, volume, and category of WMH.


Sign in / Sign up

Export Citation Format

Share Document