OPTIMIZATION OF THE DRYING PROCESS GRAIN CROP IN A TUMBLE DRYER WITH HEAT PUMP

Author(s):  
А.Н. ОСТРИКОВ ◽  
А.А. ШЕВЦОВ ◽  
В.В. ТКАЧ ◽  
Н.А. СЕРДЮКОВА

Рассмотрена возможность автоматической оптимизации процесса сушки зернобобовых культур в барабанной сушилке с парокомпрессионным тепловым насосом по технико-экономическому показателю при выполнении ограничений на качество готового продукта. В качестве критерия оптимизации использованы суммарные энергетические затраты, приходящиеся на единицу массы испаряемой влаги. Определены три составляющие числителя критерия оптимизации: затраты на преодоление аэродинамического сопротивления слоя продукта в барабанной сушилке, затраты электроэнергии на привод компрессора парокомпрессионного теплового насоса (ТНУ), привод вращения барабана. Затраты электроэнергии на привод компрессора рассчитывали через холодопроизводительность ТНУ. Установлена зависимость разности влагосодержаний сушильного агента до сушки и после нее от степени заполнения сушильного барабана зернистым продуктом при различных значениях его начальной влажности. Получена однозначная функциональная связь суммарных энергетических затрат, приходящихся на единицу массы испаряемой влаги от степени заполнения барабана. На примере сушки зерна пшеницы в барабанной сушилке с профильной канальной насадкой, укомплектованной парокомпрессионным тепловым насосом, показана возможность управления степенью заполнения барабана по минимальной величине удельных энергетических затрат. Сочетанием экспериментальных и аналитических методов исследования разработана система экстремального управления процессом сушки зерна в барабанной сушилке с тепловым насосом, позволяющая с помощью микропроцессора осуществлять оперативный поиск оптимального значения степени заполнения барабана, что существенно снизит удельные энергозатраты на процесс сушки. При этом по текущей информации, получаемой с датчиков, микропроцессор непрерывно вырабатывает сигнал отклонения текущего значения степени заполнения от оптимального и посредством исполнительного механизма воздействует на расход влажного зерна, а следовательно, и на степень заполнения барабана продуктом, так чтобы суммарная удельная мощность энергооборудования для выбранного режима сушки была бы минимальной. Для многозонной барабанной сушилки предложенный алгоритм управления необходимо повторять для каждой из зон, в которых степень заполнения регулируется с помощью секторных заслонок. The possibility of automatic optimization of the drying process of legumes in a tumble dryer with a steam compression heat pump according to the technical and economic indicator when the quality of the finished product is limited. As an optimization criterion, the total energy costs per unit mass of evaporated moisture. Three components of the numerator of the optimization criterion are determined: the costs of overcoming the aerodynamic resistance of the product layer in the drum dryer, power consumption for the compressor drive of a steam compression heat pump (HPI), drum rotation drive. The energy costs for the compressor drive were calculated through the cooling capacity of the HPI. The dependence the difference in the moisture content of the drying agent before and after drying on the degree of filling the drying drum with a granular product is established for different values its initial humidity. An unambiguous functional relationship between the total energy costs per unit mass of evaporated moisture, the degree filling the drum. On the example wheat grain drying in a drum drier with a profile channel nozzle equipped with a steam compression heat pump, it is shown that it is possible to control the degree of filling of the drum by the minimum value of the specific energy costs. A combination experimental and analytical research methods developed a system for extreme control of the drying process grain in a drum dryer with a heat pump, allowing using the microprocessor to perform an operative search for the optimal degree of filling of the drum, which will significantly reduce the specific energy consumption for the drying process. At the same time, according to the current information received from the sensors, the microprocessor continuously generates a signal of deviation of the current value the filling degree from the optimal one and by means of the actuator it affects the consumption wet grain, and consequently, the degree of filling of the drum with the product, so that the total specific power of the power equipment for the selected drying regime would be minimal. For a multi-zone drum dryer, the proposed control algorithm must be repeated for each zone in which the degree of filling is controlled by sectoral dampers.

2019 ◽  
Vol 17 (3) ◽  
Author(s):  
Lamhot P. Manalu

Crop drying is essential for preservation in agricultural applications. It is performed either using fossil fuels in an artificial mechanical drying process or by placing the crop under the open sun. The first method is costly and has a negative impact on the environment, while the second method is totally dependent on the weather. The drying process requires a lot of energy in relation to the amount of water that must be evaporated from the product. It is estimated that 12% of the total energy used by the food industries and agriculture absorbed in this process. Due to the limitation of energy resources, it is important to keep researching and developing of diversification and optimization of energy This study aims to assess the use of energy for cocoa drying using solar energy dryer and bin-type dryer, as well as to determine the drying efficiency of each type of dryer. The results showed that the efficiency of the solar dryer drying system ranges between 36% to 46%, while the tub-type dryers between 21.7% to 33.1%. The specific energy of solar dryer ranged from 6.17-7.87 MJ / kg, while the tub-type dryers 8.58-13.63 MJ / kg. Dryer efficiency is influenced by the level of solar irradiation and the amount of drying load, the higher the irradiation received and more cocoa beans are dried, the drying efficiency is also higher and the specific energy further down.Proses pengeringan memerlukan banyak energi sehubungan dengan banyaknya air yang harus diuapkan dari bahan yang dikeringkan. Pengeringan dapat dilakukan dengan menggunakan pengering mekanis berbahan bakar fosil atau dengan menempatkan produk di bawah matahari terbuka. Metode pertama adalah mahal dan memiliki dampak negatif pada lingkungan, sedangkan metode kedua sangat tergantung pada cuaca. Diperkirakan bahwa 12% dari total energi yang dipergunakan oleh industri pangan dan pertanian diserap untuk proses ini. Mengingat semakin terbatasnya sumber energi bahan bakar minyak maka usaha diversifikasi dan optimasi energi untuk pengeringan perlu terus diteliti dan dikembangkan. Salah satunya adalah pemanfaatan energi surya sebagai sumber energi terbarukan. Penelitian ini bertujuan untuk mengkaji penggunaan energi untuk pengeringan kakao dengan memakai pengering energi surya dan pengering tipe bak, serta untuk mengetahui efisiensi pengeringan dari masing-masing tipe pengering. Hasil kajian menunjukkan bahwa efisiensi total sistem pengeringan alat pengering surya berkisar antara 36% dan 46%, sedangkan pengering tipe bak antara 21.7% dan 33.1%. Kebutuhan energi spesifik alat pengering surya berkisar antara 6.17-7.87 MJ/kg, sedangkan alat pengering tipe bak 8.58-13.63 MJ/kg. Efisiensi alat pengering dipengaruhi oleh tingkat iradiasi surya dan jumlah beban pengeringan, semakin tinggi iradiasi yang diterima pengering serta semakin banyak biji kakao yang dikeringkan, maka efisiensi pengeringan juga semakin tinggi dan kebutuhan energi spesifik semakin turun.Keywords: energy, efficiency, cocoa, solar dryer, bin-type dryer.


2021 ◽  
Vol 45 (37) ◽  
pp. 17592-17602
Author(s):  
Manoj Goswami ◽  
Mattath Athika ◽  
Satendra Kumar ◽  
Perumal Elumalai ◽  
Netrapal Singh ◽  
...  

The symmetric device shows a maximum specific energy density of 30 W h kg−1 at a specific power density of 380 W kg−1, which was reduced to 4 W h kg−1 at a highest specific power density of 4224 W kg−1.


2011 ◽  
Vol 88 (8) ◽  
pp. 2677-2684 ◽  
Author(s):  
Aysegul Gungor ◽  
Zafer Erbay ◽  
Arif Hepbasli
Keyword(s):  

2019 ◽  
Vol 161 ◽  
pp. 114107 ◽  
Author(s):  
Niklas Brandt ◽  
Thomas Alpögger ◽  
Wilhelm Tegethoff ◽  
Marcos Bockholt ◽  
Andreas Möhlenkamp ◽  
...  

2016 ◽  
Vol 90 (9-12) ◽  
pp. 2655-2667 ◽  
Author(s):  
Oussama Masmoudi ◽  
Alice Yalaoui ◽  
Yassine Ouazene ◽  
Hicham Chehade

2021 ◽  
Author(s):  
Muhammad Sajjad ◽  
Muhammad Sufyan Javed ◽  
Muhammad Imran ◽  
Zhiyu Mao

To meet practical application requirements, high specific energy and specific power and excellent cyclability are highly desired.


2014 ◽  
Vol 919-921 ◽  
pp. 1735-1738 ◽  
Author(s):  
Peng Gong ◽  
Jian Tang

Ground-Source Heat Pump (PSHP) was verified by US Environmental Protection Agency (EPA) as one of the most efficient air conditioning systems on present market. It has a higher efficiency than other heating systems from 50% to 70%, and a higher efficiency than other cooling systems from 30% to 50%. The working principle of PSHP determines its low operating costs. By comparing the total energy efficiency, the existing groundwater heat pump total energy efficiency is the highest, about 115%. The total energy efficiency for soil-source heat pump is up to 100%. But traditional air conditioning is far less than the level. Articles present a research on Ground-Source Heat Pump system and its cost with a scientific and objective principles. Ground-source heat pump is a new central air conditioning system of Low-carbon energy saving. Due to the high technical content, function requirement, and installation difficulty , the average initial investment of ground-source heat pump is much higher than traditional central air conditioning. Taking into account the added costs of heating systems based on traditional central air-conditioning, such as boilers, it will not deviate too much from it.


Sign in / Sign up

Export Citation Format

Share Document