Bioaccumulation of Heavy Elements in Laccobius spp. (Coleoptera: Hydrophilidae) and their Abiotic Environment from Polluted and Unpolluted Areas of Erzurum Wetlands, Turkey

Author(s):  
Zeynep Aydogan
1988 ◽  
Vol 132 ◽  
pp. 501-506
Author(s):  
C. Sneden ◽  
C. A. Pilachowski ◽  
K. K. Gilroy ◽  
J. J. Cowan

Current observational results for the abundances of the very heavy elements (Z>30) in Population II halo stars are reviewed. New high resolution, low noise spectra of many of these extremely metal-poor stars reveal general consistency in their overall abundance patterns. Below Galactic metallicities of [Fe/H] Ã −2, all of the very heavy elements were manufactured almost exclusively in r-process synthesis events. However, there is considerable star-to-star scatter in the overall level of very heavy element abundances, indicating the influence of local supernovas on element production in the very early, unmixed Galactic halo. The s-process appears to contribute substantially to stellar abundances only in stars more metal-rich than [Fe/H] Ã −2.


Author(s):  
T. Oikawa ◽  
M. Inoue ◽  
T. Honda ◽  
Y. Kokubo

EELS allows us to make analysis of light elements such as hydrogen to heavy elements of microareas on the specimen. In energy loss spectra, however, elemental signals ride on a high background; therefore, the signal/background (S/B) ratio is very low in EELS. A technique which collects the center beam axial-symmetrically in the scattering angle is generally used to obtain high total intensity. However, the technique collects high background intensity together with elemental signals; therefore, the technique does not improve the S/B ratio. This report presents the experimental results of the S/B ratio measured as a function of the scattering angle and shows the possibility of the S/B ratio being improved in the high scattering angle range.Energy loss spectra have been measured using a JEM-200CX TEM with an energy analyzer ASEA3 at 200 kV.Fig.l shows a typical K-shell electron excitation edge riding on background in an energy loss spectrum.


Author(s):  
Noriyuki Kuwano ◽  
Masaru Itakura ◽  
Kensuke Oki

Pd-Ce alloys exhibit various anomalies in physical properties due to mixed valences of Ce, and the anomalies are thought to be strongly related with the crystal structures. Since Pd and Ce are both heavy elements, relative magnitudes of (fcc-fpd) are so small compared with <f> that superlattice reflections, even if any, sometimes cannot be detected in conventional x-ray powder patterns, where fee and fpd are atomic scattering factors of Ce and Pd, and <f> the mean value in the crystal. However, superlattices in Pd-Ce alloys can be analyzed by electron microscopy, thanks to the high detectability of electron diffraction. In this work, we investigated modulated superstructures in alloys with 12.5 and 15.0 at.%Ce.Ingots of Pd-Ce alloys were prepared in an arc furnace under atmosphere of ultra high purity argon. The disc specimens cut out from the ingots were heat-treated in vacuum and electrothinned to electron transparency by a jet method.


2010 ◽  
Vol 30 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Haiyan LU ◽  
Junji CAO ◽  
Yongming HAN ◽  
Feng WU
Keyword(s):  

1957 ◽  
Vol 35 (1) ◽  
pp. 21-37 ◽  
Author(s):  
J. D. Jackson

The Monte Carlo calculations of McManus and Sharp (unpublished) for the prompt nuclear processes occurring upon bombardment of heavy elements by 400 Mev. protons are combined with a description of the subsequent neutron evaporation to determine spallation cross sections for comparison with experiment. The model employed is a schematic one which suppresses the detailed characteristics of individual nuclei, but gives the over-all behavior to be expected. Many-particle and collective effects such as alpha particle emission and fission are ignored. The computed cross sections are presented in a variety of different graphical forms which illustrate quantitatively the qualitative picture of high energy reactions first given by Serber (1947). The calculations are in general agreement with existing data when fission is not an important effect, but the agreement does not imply a very stringent test of the various features of the model.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 534
Author(s):  
Pavel Samec ◽  
Jiří Volánek ◽  
Miloš Kučera ◽  
Pavel Cudlín

Plant distribution is most closely associated with the abiotic environment. The abiotic environment affects plant species’ abundancy unevenly. The asymmetry is further deviated by human interventions. Contrarily, soil properties preserve environmental influences from the anthropogenic perturbations. The study examined the supra-regional similarities of soil effects on plant species’ abundance in temperate forests to determine: (i) spatial relationships between soil property and forest-plant diversity among geographical regions; (ii) whether the spatial dependencies among compared forest-diversity components are influenced by natural forest representation. The spatial dependence was assessed using geographically weighted regression (GWR) of soil properties and plant species abundance from forest stands among 91 biogeographical regions in the Czech Republic (Central Europe). Regional soil properties and plant species abundance were acquired from 7550 national forest inventory plots positioned in a 4 × 4 km grid. The effect of natural forests was assessed using linear regression between the sums of squared GWR residues and protected forest distribution in the regions. Total diversity of forest plants is significantly dependent on soil-group representation. The soil-group effect is more significant than that of bedrock bodies, most of all in biogeographical regions with protected forest representation >50%. Effects of soil chemical properties were not affected by protected forest distribution. Spatial dependency analysis separated biogeographical regions of optimal forest plant diversity from those where inadequate forest-ecosystem diversity should be increased alongside soil diversity.


1965 ◽  
Vol 17 (3) ◽  
pp. 259-269 ◽  
Author(s):  
F. Schmitz ◽  
R. Lindner
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document