scholarly journals Is error detection helpful on IBM 5Q chips?

2018 ◽  
Vol 18 (11&12) ◽  
pp. 949-964 ◽  
Author(s):  
Christophe Vuillot

This paper reports on experiments realized on several IBM~5Q chips which show evidence for the advantage of using error detection and fault-tolerant design of quantum circuits. We show an average improvement of the task of sampling from states that can be fault-tolerantly prepared in the [4,2,2] code, when using a fault-tolerant technique well suited to the layout of the chip. By showing that fault-tolerant quantum computation is already within our reach, the author hopes to encourage this approach.

2008 ◽  
Vol 8 (3&4) ◽  
pp. 181-244 ◽  
Author(s):  
P. Aliferis ◽  
D. Gottesman ◽  
J. Preskill

We prove an accuracy threshold theorem for fault-tolerant quantum computation based on error detection and postselection. Our proof provides a rigorous foundation for the scheme suggested by Knill, in which preparation circuits for ancilla states are protected by a concatenated error-detecting code and the preparation is aborted if an error is detected. The proof applies to independent stochastic noise but (in contrast to proofs of the quantum accuracy threshold theorem based on concatenated error-correcting codes) not to strongly-correlated adversarial noise. Our rigorously established lower bound on the accuracy threshold, $1.04\times 10^{-3}$, is well below Knill's numerical estimates.


2007 ◽  
Vol 7 (1&2) ◽  
pp. 139-156
Author(s):  
P. Aliferis ◽  
B.M. Terhal

We provide a rigorous analysis of fault-tolerant quantum computation in the presence of local leakage faults. We show that one can systematically deal with leakage by using appropriate leakage-reduction units such as quantum teleportation. The leakage noise is described microscopically, by Hamiltonian couplings, and the noise is treated coherently, similar to general non-Markovian noise analyzed in Refs. \cite{Terhal04} and \cite{Aliferis05b}. We describe ways to limit the use of leakage-reduction units while keeping the quantum circuits fault-tolerant and we also discuss how leakage reduction by teleportation is naturally achieved in measurement-based computation.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Andrew N. Glaudell ◽  
Neil J. Ross ◽  
Jacob M. Taylor

AbstractWe study two-qubit circuits over the Clifford+CS gate set, which consists of the Clifford gates together with the controlled-phase gate CS = diag(1, 1, 1, i). The Clifford+CS gate set is universal for quantum computation and its elements can be implemented fault-tolerantly in most error-correcting schemes through magic state distillation. Since non-Clifford gates are typically more expensive to perform in a fault-tolerant manner, it is often desirable to construct circuits that use few CS gates. In the present paper, we introduce an efficient and optimal synthesis algorithm for two-qubit Clifford+CS operators. Our algorithm inputs a Clifford+CS operator U and outputs a Clifford+CS circuit for U, which uses the least possible number of CS gates. Because the algorithm is deterministic, the circuit it associates to a Clifford+CS operator can be viewed as a normal form for that operator. We give an explicit description of these normal forms and use this description to derive a worst-case lower bound of $$5{{\rm{log}}}_{2}(\frac{1}{\epsilon })+O(1)$$ 5 log 2 ( 1 ϵ ) + O ( 1 ) on the number of CS gates required to ϵ-approximate elements of SU(4). Our work leverages a wide variety of mathematical tools that may find further applications in the study of fault-tolerant quantum circuits.


2021 ◽  
Vol 20 (7) ◽  
Author(s):  
Ismail Ghodsollahee ◽  
Zohreh Davarzani ◽  
Mariam Zomorodi ◽  
Paweł Pławiak ◽  
Monireh Houshmand ◽  
...  

AbstractAs quantum computation grows, the number of qubits involved in a given quantum computer increases. But due to the physical limitations in the number of qubits of a single quantum device, the computation should be performed in a distributed system. In this paper, a new model of quantum computation based on the matrix representation of quantum circuits is proposed. Then, using this model, we propose a novel approach for reducing the number of teleportations in a distributed quantum circuit. The proposed method consists of two phases: the pre-processing phase and the optimization phase. In the pre-processing phase, it considers the bi-partitioning of quantum circuits by Non-Dominated Sorting Genetic Algorithm (NSGA-III) to minimize the number of global gates and to distribute the quantum circuit into two balanced parts with equal number of qubits and minimum number of global gates. In the optimization phase, two heuristics named Heuristic I and Heuristic II are proposed to optimize the number of teleportations according to the partitioning obtained from the pre-processing phase. Finally, the proposed approach is evaluated on many benchmark quantum circuits. The results of these evaluations show an average of 22.16% improvement in the teleportation cost of the proposed approach compared to the existing works in the literature.


Nature ◽  
2021 ◽  
Vol 595 (7867) ◽  
pp. 383-387
Author(s):  
◽  
Zijun Chen ◽  
Kevin J. Satzinger ◽  
Juan Atalaya ◽  
Alexander N. Korotkov ◽  
...  

AbstractRealizing the potential of quantum computing requires sufficiently low logical error rates1. Many applications call for error rates as low as 10−15 (refs. 2–9), but state-of-the-art quantum platforms typically have physical error rates near 10−3 (refs. 10–14). Quantum error correction15–17 promises to bridge this divide by distributing quantum logical information across many physical qubits in such a way that errors can be detected and corrected. Errors on the encoded logical qubit state can be exponentially suppressed as the number of physical qubits grows, provided that the physical error rates are below a certain threshold and stable over the course of a computation. Here we implement one-dimensional repetition codes embedded in a two-dimensional grid of superconducting qubits that demonstrate exponential suppression of bit-flip or phase-flip errors, reducing logical error per round more than 100-fold when increasing the number of qubits from 5 to 21. Crucially, this error suppression is stable over 50 rounds of error correction. We also introduce a method for analysing error correlations with high precision, allowing us to characterize error locality while performing quantum error correction. Finally, we perform error detection with a small logical qubit using the 2D surface code on the same device18,19 and show that the results from both one- and two-dimensional codes agree with numerical simulations that use a simple depolarizing error model. These experimental demonstrations provide a foundation for building a scalable fault-tolerant quantum computer with superconducting qubits.


2016 ◽  
Vol 113 (44) ◽  
pp. 12386-12390 ◽  
Author(s):  
Hailong Fu ◽  
Pengjie Wang ◽  
Pujia Shan ◽  
Lin Xiong ◽  
Loren N. Pfeiffer ◽  
...  

Some theories predict that the filling factor 5/2 fractional quantum Hall state can exhibit non-Abelian statistics, which makes it a candidate for fault-tolerant topological quantum computation. Although the non-Abelian Pfaffian state and its particle-hole conjugate, the anti-Pfaffian state, are the most plausible wave functions for the 5/2 state, there are a number of alternatives with either Abelian or non-Abelian statistics. Recent experiments suggest that the tunneling exponents are more consistent with an Abelian state rather than a non-Abelian state. Here, we present edge-current–tunneling experiments in geometrically confined quantum point contacts, which indicate that Abelian and non-Abelian states compete at filling factor 5/2. Our results are consistent with a transition from an Abelian state to a non-Abelian state in a single quantum point contact when the confinement is tuned. Our observation suggests that there is an intrinsic non-Abelian 5/2 ground state but that the appropriate confinement is necessary to maintain it. This observation is important not only for understanding the physics of the 5/2 state but also for the design of future topological quantum computation devices.


2009 ◽  
Vol 07 (06) ◽  
pp. 1053-1203 ◽  
Author(s):  
ROBERT RAUßENDORF

In this thesis, we describe the one-way quantum computer [Formula: see text], a scheme of universal quantum computation that consists entirely of one-qubit measurements on a highly entangled multiparticle state, i.e. the cluster state. We prove the universality of the [Formula: see text], describe the underlying computational model and demonstrate that the [Formula: see text] can be operated fault-tolerantly. In Sec. 2, we show that the [Formula: see text] can be regarded as a simulator of quantum logic networks. In this way, we prove the universality and establish the link to the network model — the common model of quantum computation. We also indicate that the description of the [Formula: see text] as a network simulator is not adequate in every respect. In Sec. 3, we derive the computational model underlying the [Formula: see text], which is very different from the quantum logic network model. The [Formula: see text] has no quantum input, no quantum output and no quantum register, and the unitary gates from some universal set are not the elementary building blocks of [Formula: see text] quantum algorithms. Further, all information that is processed with the [Formula: see text] is the outcomes of one-qubit measurements and thus processing of information exists only at the classical level. The [Formula: see text] is nevertheless quantum-mechanical, as it uses a highly entangled cluster state as the central physical resource. In Sec. 4, we show that there exist nonzero error thresholds for fault-tolerant quantum computation with the [Formula: see text]. Further, we outline the concept of checksums in the context of the [Formula: see text], which may become an element in future practical and adequate methods for fault-tolerant [Formula: see text] computation.


Sign in / Sign up

Export Citation Format

Share Document