scholarly journals Atomistic molecular dynamics insights on water local structure and dynamics on different surfaces of zeolitic-imidazolate frameworks

Author(s):  
Mohammad R. Momeni ◽  
Dil K. Limbu ◽  
Sara Abdelhamid ◽  
Shaina Pearson ◽  
Farnaz A. Shakib

Most of chemistry in nanoporous materials with small pore sizes and windows is known to occur on the surface which is in immediate contact with substrate/solvent, rather than inside pores and channels. Here, we report the results of our comprehensive atomistic molecular dynamics simulations on deciphering the intermolecular hydrogen bond network of water on outer surface of a nanoparticle model of ZIF-8 vs. inner surfaces of its pristine crystalline bulk model. Using a finite ~5.1 nm nanoparticle model with edges containing under--coordinated Zn2+ metal sites we show that water exposed to the surface of the nanoparticle exhibits both interfacial and bulk-like characters. Furthermore, we illustrate that as water content increases larger droplets are formed with water molecules starting to diffuse into the nanopores. While the confined water in the crystalline bulk simulations is pushed to the vacant pores due to hydrophobic inner surfaces, the outer surface water molecules form chemical bonds with under--coordinated Zn2+ metal sites which act as nucleation sites for the water droplets to form and hence making the surface hydrophilic. By adapting a similar mechanism to the dangling linker defect formation mechanism, we probe the tendency of the outer surface of ZIF-8 nanoparticles to water attack and hydrolysis. Results presented in this work are useful in designing more robust materials for applications in humid environments.

Membranes ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 165 ◽  
Author(s):  
One-Sun Lee

We performed molecular dynamics simulations of water molecules inside a hydrophobic membrane composed of stacked graphene sheets. By decreasing the density of water molecules inside the membrane, we observed that water molecules form a droplet through a hydrogen bond with each other in the hydrophobic environment that stacked graphene sheets create. We found that the water droplet translates as a whole body rather than a dissipate. The translational diffusion coefficient along the graphene surface increases as the number of water molecules in the droplet decreases, because the bigger water droplet has a stronger van der Waals interaction with the graphene surface that hampers the translational motion. We also observed a longer hydrogen bond lifetime as the density of water decreased, because the hydrophobic environment limits the libration motion of the water molecules. We also calculated the reorientational correlation time of the water molecules, and we found that the rotational motion of confined water inside the membrane is anisotropic and the reorientational correlation time of confined water is slower than that of bulk water. In addition, we employed steered molecular dynamics simulations for guiding the target molecule, and measured the free energy profile of water and ion penetration through the interstice between graphene sheets. The free energy profile of penetration revealed that the optimum interlayer distance for desalination is ~10 Å, where the minimum distance for water penetration is 7 Å. With a 7 Å interlayer distance between the graphene sheets, water molecules are stabilized inside the interlayer space because of the van der Waals interaction with the graphene sheets where sodium and chloride ions suffer from a 3–8 kcal/mol energy barrier for penetration. We believe that our simulation results would be a significant contribution for designing a new graphene-based membrane for desalination.


2018 ◽  
Vol 42 (19) ◽  
pp. 16258-16272 ◽  
Author(s):  
Elham Jalalitalab ◽  
Mohsen Abbaspour ◽  
Hamed Akbarzadeh

Different morphologies of water molecules are confined between two parallel graphene surfaces.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 123
Author(s):  
Bin Cao ◽  
Ji-Wei Dong ◽  
Ming-He Chi

Water impurity is the essential factor of reducing the insulation performance of transformer oil, which directly determines the operating safety and life of a transformer. Molecular dynamics simulations and first-principles electronic-structure calculations are employed to study the diffusion behavior of water molecules and the electrical breakdown mechanism of transformer oil containing water impurities. The molecular dynamics of an oil-water micro-system model demonstrates that the increase of aging acid concentration will exponentially expedite thermal diffusion of water molecules. Density of states (DOS) for a local region model of transformer oil containing water molecules indicates that water molecules can introduce unoccupied localized electron-states with energy levels close to the conduction band minimum of transformer oil, which makes water molecules capable of capturing electrons and transforming them into water ions during thermal diffusion. Subsequently, under a high electric field, water ions collide and impact on oil molecules to break the molecular chain of transformer oil, engendering carbonized components that introduce a conduction electronic-band in the band-gap of oil molecules as a manifestation of forming a conductive region in transformer oil. The conduction channel composed of carbonized components will be eventually formed, connecting two electrodes, with the carbonized components developing rapidly under the impact of water ions, based on which a large number of electron carriers will be produced similar to “avalanche” discharge, leading to an electrical breakdown of transformer oil insulation. The water impurity in oil, as the key factor for forming the carbonized conducting channel, initiates the electric breakdown process of transformer oil, which is dominated by thermal diffusion of water molecules. The increase of aging acid concentration will significantly promote the thermal diffusion of water impurities and the formation of an initial conducting channel, accounting for the degradation in dielectric strength of insulating oil containing water impurities after long-term operation of the transformer.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Miraslau L. Barabash ◽  
William A. T. Gibby ◽  
Carlo Guardiani ◽  
Alex Smolyanitsky ◽  
Dmitry G. Luchinsky ◽  
...  

AbstractIn order to permeate a nanopore, an ion must overcome a dehydration energy barrier caused by the redistribution of surrounding water molecules. The redistribution is inhomogeneous, anisotropic and strongly position-dependent, resulting in complex patterns that are routinely observed in molecular dynamics simulations. Here, we study the physical origin of these patterns and of how they can be predicted and controlled. We introduce an analytic model able to predict the patterns in a graphene nanopore in terms of experimentally accessible radial distribution functions, giving results that agree well with molecular dynamics simulations. The patterns are attributable to a complex interplay of ionic hydration shells with water layers adjacent to the graphene membrane and with the hydration cloud of the nanopore rim atoms, and we discuss ways of controlling them. Our findings pave the way to designing required transport properties into nanoionic devices by optimising the structure of the hydration patterns.


2020 ◽  
Vol 65 (6) ◽  
pp. 510
Author(s):  
S. Perepelytsya

The DNA double helix is a polyanionic macromolecule that is neutralized in water solutions by metal ions (counterions). The property of counterions to stabilize the water network (positive hydration) or to make it friable (negative hydration) is important in terms of the physical mechanisms of stabilization of the DNA double helix. In the present research, the effects of positive hydration of Na+ counterions and negative hydration of K+ and Cs+ counterions incorporated into the hydration shell of the DNA double helix have been studied using molecular dynamics simulations. The results have shown that the dynamics of the hydration shell of counterions depends on the region of the double helix: minor groove, major groove, and outside the macromolecule. The longest average residence time has been observed for water molecules contacting with the counterions localized in the minor groove of the double helix (about 50 ps for Na+ and lower than 10 ps for K+ and Cs+). The estimated potentials of the mean force for the hydration shells of counterions show that the water molecules are constrained too strongly, and the effect of negative hydration for K+ and Cs+ counterions has not been observed in the simulations. The analysis has shown that the effects of counterion hydration can be described more accurately with water models having lower dipole moments.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Xiang-Xiong Zhang ◽  
Min Chen

Manipulating the ice nucleation ability of liquid water by solid surface is of fundamental importance, especially in the design of icephobic surfaces. In this paper, the icephobicity of graphene surfaces functionalized by sodium ions, chloride ions, or methane molecules is investigated using molecular dynamics simulations. The icephobicity of the surface is evaluated by the freezing temperature. The freezing temperature on surface functionalized by methane molecules decreases at first and then increases as a function of the number groups, while the freezing temperature increases monotonically as a function of the number groups upon surfaces functionalized by sodium ions or chloride ions. The difference can be partially explained by the potential morphologies near the surfaces. Additionally, the validity of indicating the ice nucleation ability of water molecules using the number of six rings in the system is examined. Current study shows that the ice nucleation upon functionalized surfaces is inhibited when compared with smooth graphene substrate, which proves the feasibility of changing the icephobicity of the surfaces by functionalizing with certain ions or molecules.


2004 ◽  
Vol 76 (1) ◽  
pp. 215-221 ◽  
Author(s):  
A. Vegiri

The origin of the dramatic increase of the reorientational and structural relaxation rates of single water molecules in clusters of size N = 16, 32, and 64 at T = 200 K, under the influence of an external, relatively weak electric field (~0.5 107 V/cm) is examined through molecular dynamics simulations. The observed effect is attributed not to any profound structural changes, but to the increase of the size of the molecular cage. The response of water to an electric field in this range shows many similarities with the dynamics of water under low pressure. By referring to simulations and experiments from the literature, we show that in both cases the observed effects are dictated by a common mechanism.


Sign in / Sign up

Export Citation Format

Share Document