scholarly journals Electrical Breakdown Mechanism of Transformer Oil with Water Impurity: Molecular Dynamics Simulations and First-Principles Calculations

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 123
Author(s):  
Bin Cao ◽  
Ji-Wei Dong ◽  
Ming-He Chi

Water impurity is the essential factor of reducing the insulation performance of transformer oil, which directly determines the operating safety and life of a transformer. Molecular dynamics simulations and first-principles electronic-structure calculations are employed to study the diffusion behavior of water molecules and the electrical breakdown mechanism of transformer oil containing water impurities. The molecular dynamics of an oil-water micro-system model demonstrates that the increase of aging acid concentration will exponentially expedite thermal diffusion of water molecules. Density of states (DOS) for a local region model of transformer oil containing water molecules indicates that water molecules can introduce unoccupied localized electron-states with energy levels close to the conduction band minimum of transformer oil, which makes water molecules capable of capturing electrons and transforming them into water ions during thermal diffusion. Subsequently, under a high electric field, water ions collide and impact on oil molecules to break the molecular chain of transformer oil, engendering carbonized components that introduce a conduction electronic-band in the band-gap of oil molecules as a manifestation of forming a conductive region in transformer oil. The conduction channel composed of carbonized components will be eventually formed, connecting two electrodes, with the carbonized components developing rapidly under the impact of water ions, based on which a large number of electron carriers will be produced similar to “avalanche” discharge, leading to an electrical breakdown of transformer oil insulation. The water impurity in oil, as the key factor for forming the carbonized conducting channel, initiates the electric breakdown process of transformer oil, which is dominated by thermal diffusion of water molecules. The increase of aging acid concentration will significantly promote the thermal diffusion of water impurities and the formation of an initial conducting channel, accounting for the degradation in dielectric strength of insulating oil containing water impurities after long-term operation of the transformer.

Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1274
Author(s):  
Yi Guan ◽  
Ming-He Chi ◽  
Wei-Feng Sun ◽  
Qing-Guo Chen ◽  
Xin-Lao Wei

The water molecule migration and aggregation behaviors in oil-impregnated pressboard are investigated by molecular dynamics simulations in combination with Monte Carlo molecular simulation technique. The free energy and phase diagram of H2O-dodecylbenzene (DDB) and H2O-cellulose mixtures are calculated by Monte Carlo technique combined with the modified Flory-Huggins model, demonstrating that H2O molecules can hardly dissolved with infinitesimal content in cellulose system at temperature lower than 650 K, based on which the oil/cellulose layered structure with water impurity representing three-phase coexistence in oil-impregnated pressboard are modeled and performed for molecular dynamics. The molecular dynamics of H2O/DDB/cellulose three-phase mixture simulating oil-paper insulating system with H2O impurity indicates that DDB molecules can thermally intrude into the cellulose-water interface so as to separate the water phase and cellulose fiber. The first-principles electronic structure calculations for local region of H2O/DDB interface show that H2O molecules can introduce bound states to trap electrons and acquire negative charges, so that they will obtain sufficient energy from applied electric field to break DDB molecular chain by collision, which are verified by subsequent molecular dynamics simulations of H2O−/DDB interface model. The electric breakdown mechanism under higher than 100 kV/m electric field is presented based on the further first-principles calculations of the produced carbonized fragments being dissolved and diffusing in DDB phase. The resulted broken DDB fragments will introduce impurity band between valence and conduction bands of DDB system, evidently decreasing bandgap as to that of conducting materials in their existence space. The conductance channel of these carbonized DDB fragments will eventually be formed to initiate the avalanche breakdown process by the cycle-feedback of injected charge carriers with carbonized channels.


2018 ◽  
Vol 20 (20) ◽  
pp. 13944-13951 ◽  
Author(s):  
Pedro Augusto Franco Pinheiro Moreira ◽  
Roberto Gomes de Aguiar Veiga ◽  
Ingrid de Almeida Ribeiro ◽  
Rodrigo Freitas ◽  
Julian Helfferich ◽  
...  

First-principles and classical molecular dynamics simulations show that diffusion of water molecules at pre-melted grain boundaries in ice is glassy-like, showing sub-diffusive behavior.


2020 ◽  
Author(s):  
Anuradha Pallipurath ◽  
Francesco Civati ◽  
Jonathan Skelton ◽  
Dean Keeble ◽  
Clare Crowley ◽  
...  

X-ray pair distribution function analysis is used with first-principles molecular dynamics simulations to study the co-operative H<sub>2</sub>O binding, structural dynamics and host-guest interactions in the channel hydrate of diflunisal.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Miraslau L. Barabash ◽  
William A. T. Gibby ◽  
Carlo Guardiani ◽  
Alex Smolyanitsky ◽  
Dmitry G. Luchinsky ◽  
...  

AbstractIn order to permeate a nanopore, an ion must overcome a dehydration energy barrier caused by the redistribution of surrounding water molecules. The redistribution is inhomogeneous, anisotropic and strongly position-dependent, resulting in complex patterns that are routinely observed in molecular dynamics simulations. Here, we study the physical origin of these patterns and of how they can be predicted and controlled. We introduce an analytic model able to predict the patterns in a graphene nanopore in terms of experimentally accessible radial distribution functions, giving results that agree well with molecular dynamics simulations. The patterns are attributable to a complex interplay of ionic hydration shells with water layers adjacent to the graphene membrane and with the hydration cloud of the nanopore rim atoms, and we discuss ways of controlling them. Our findings pave the way to designing required transport properties into nanoionic devices by optimising the structure of the hydration patterns.


2014 ◽  
Vol 16 (39) ◽  
pp. 21135-21143 ◽  
Author(s):  
Richard I. Ainsworth ◽  
Jamieson K. Christie ◽  
Nora H. de Leeuw

First-principles and classical molecular dynamics simulations have been carried out on undoped and silver-doped phosphate-based glasses with 50 mol% P2O5, 0–20 mol% Ag2O, and varying amounts of Na2O and CaO.


2009 ◽  
Vol 60-61 ◽  
pp. 315-319 ◽  
Author(s):  
W.W. Zhang ◽  
Qing An Huang ◽  
H. Yu ◽  
L.B. Lu

Molecular dynamics simulations are carried out to characterize the mechanical properties of [001] and [110] oriented silicon nanowires, with the thickness ranging from 1.05nm to 3.24 nm. The nanowires are taken to have ideal surfaces and (2×1) reconstructed surfaces, respectively. A series of simulations for square cross-section Si nanowires have been performed and Young’s modulus is calculated from energy–strain relationship. The results show that the elasticity of Si nanowires is strongly depended on size and surface reconstruction. Furthermore, the physical origin of above results is analyzed, consistent with the bond loss and saturation concept. The results obtained from the molecular dynamics simulations are in good agreement with the values of first-principles. The molecular dynamics simulations combine the accuracy and efficiency.


Sign in / Sign up

Export Citation Format

Share Document