Two-Dimensional Noble-Metal Dichalcogenides and Phosphochalcogenides

Author(s):  
Roman Kempt ◽  
Agnieszka Kuc ◽  
Thomas Heine

Noble-metal chalcogenides, dichalcogenides and phosphochalcogenides are an emerging class of two-dimensional materials. Their properties can be broadly tuned via quantum confinement (number of layers) and defect engineering, including metal-to-semiconductor transitions, magnetic ordering, and topological surface states. They possess various polytypes, often of similar formation energy, which can be assessed by selective synthesis approaches. They excel in mechanical, optical and chemical sensing applications, and feature long-term air- and moisture stability. In this review, we summarize the recent progress in the field of noble metal chalcogenides and phosphochalcogenides and highlight the structural complexity and its impact on applications.

2019 ◽  
Author(s):  
Roman Kempt ◽  
Agnieszka Kuc ◽  
Thomas Heine

Noble-metal chalcogenides, dichalcogenides and phosphochalcogenides are an emerging class of two-dimensional materials. Their properties can be broadly tuned via quantum confinement (number of layers) and defect engineering, including metal-to-semiconductor transitions, magnetic ordering, and topological surface states. They possess various polytypes, often of similar formation energy, which can be assessed by selective synthesis approaches. They excel in mechanical, optical and chemical sensing applications, and feature long-term air- and moisture stability. In this review, we summarize the recent progress in the field of noble metal chalcogenides and phosphochalcogenides and highlight the structural complexity and its impact on applications.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Lei Yin ◽  
Peng He ◽  
Ruiqing Cheng ◽  
Feng Wang ◽  
Fengmei Wang ◽  
...  

Abstract Defects play a crucial role in determining electric transport properties of two-dimensional transition metal dichalcogenides. In particular, defect-induced deep traps have been demonstrated to possess the ability to capture carriers. However, due to their poor stability and controllability, most studies focus on eliminating this trap effect, and little consideration was devoted to the applications of their inherent capabilities on electronics. Here, we report the realization of robust trap effect, which can capture carriers and store them steadily, in two-dimensional MoS2xSe2(1-x) via synergistic effect of sulphur vacancies and isoelectronic selenium atoms. As a result, infrared detection with very high photoresponsivity (2.4 × 105 A W−1) and photoswitching ratio (~108), as well as nonvolatile infrared memory with high program/erase ratio (~108) and fast switching time, are achieved just based on an individual flake. This demonstration of defect engineering opens up an avenue for achieving high-performance infrared detector and memory.


Micromachines ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 693
Author(s):  
Andrew Voshell ◽  
Mauricio Terrones ◽  
Mukti Rana

Two-dimensional (2D) materials have shown promise in various optical and electrical applications. Among these materials, semiconducting transition metal dichalcogenides (TMDs) have been heavily studied recently for their photodetection and thermoelectric properties. The recent progress in fabrication, defect engineering, doping, and heterostructure design has shown vast improvements in response time and sensitivity, which can be applied to both contact-based (thermocouple), and non-contact (photodetector) thermal sensing applications. These improvements have allowed the possibility of cost-effective and tunable thermal sensors for novel applications, such as broadband photodetectors, ultrafast detectors, and high thermoelectric figures of merit. In this review, we summarize the properties arisen in works that focus on the respective qualities of TMD-based photodetectors and thermocouples, with a focus on their optical, electrical, and thermoelectric capabilities for using them in sensing and detection.


2D Materials ◽  
2016 ◽  
Vol 3 (2) ◽  
pp. 022002 ◽  
Author(s):  
Zhong Lin ◽  
Bruno R Carvalho ◽  
Ethan Kahn ◽  
Ruitao Lv ◽  
Rahul Rao ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1675-1694 ◽  
Author(s):  
Yumei Jing ◽  
Baoze Liu ◽  
Xukun Zhu ◽  
Fangping Ouyang ◽  
Jian Sun ◽  
...  

AbstractDiffering from its bulk counterparts, atomically thin two-dimensional transition metal dichalcogenides that show strong interaction with light are considered as new candidates for optoelectronic devices. Either physical or chemical strategies can be utilized to effectively tune the intrinsic electronic structures for adopting optoelectronic applications. This review will focus on the different tuning strategies that include its physics principles, in situ experimental techniques, and its application of various optoelectronic devices.


Author(s):  
Feng Xiao ◽  
Wen Lei ◽  
Wei Wang ◽  
Lili Xu ◽  
Shengli Zhang ◽  
...  

Emerging two-dimensional (2D) noble-metal dichalcogenides (NMDCs) PdX2 (X = S and Se) crystallize in an unusual orthorhombic structure (2O phase) with unique pentagons and PdX4 planar squares as building blocks,...


2020 ◽  
Vol 59 (24) ◽  
pp. 9242-9254 ◽  
Author(s):  
Roman Kempt ◽  
Agnieszka Kuc ◽  
Thomas Heine

2020 ◽  
Vol 49 (30) ◽  
pp. 10319-10327 ◽  
Author(s):  
Chunyu Xie ◽  
Pengfei Yang ◽  
Yahuan Huan ◽  
Fangfang Cui ◽  
Yanfeng Zhang

This Frontier highlights the roles of added salts in the chemical vapor deposition synthesis of two-dimensional transition metal dichalcogenides.


Sign in / Sign up

Export Citation Format

Share Document