Enhanced Performance Induced by Phase Transition of Li2FeSiO4 upon Cycling at High Temperature

Author(s):  
Titus Masese ◽  
Yuki Orikasa ◽  
Kentaro Yamamoto ◽  
Yosuke Horie ◽  
Rika Hagiwara ◽  
...  

<p>Owing to its low cost, thermal stability and theoretically high capacity, Li<sub>2</sub>FeSiO<sub>4 </sub>has been a promising cathode material for high-energy-density Li-ion (Li<sup>+</sup>) battery system. However, its poor rate performance and high voltage polarisation attributed to innately slow Li<sup>+</sup> kinetics at room temperature, has fundamentally curbed its ascent into prominence. Here, the rate performance of Li<sub>2</sub>FeSiO<sub>4</sub> at high temperatures in electrolyte comprising molten salt (ionic liquid) was investigated. Subsequently, a comparison of the phase transition behaviour observed at both high-temperature and room-temperature cycling was elucidated. Our results show that remarkable rate performance with good cyclability in conjunction with low voltage polarisation is attained upon cycling of Li<sub>2</sub>FeSiO<sub>4</sub> at high temperatures, due to the faster phase transformation from unstable monoclinic structures to thermodynamically stable orthorhombic structures triggered by elevated temperature. What this study adds to the burgeoning body of research work relating to the silicates is that the initially slow phase transformation behaviour observed at room temperature can significantly be enhanced upon cycling at elevated temperatures.</p>

2020 ◽  
Author(s):  
Titus Masese ◽  
Yuki Orikasa ◽  
Kentaro Yamamoto ◽  
Yosuke Horie ◽  
Rika Hagiwara ◽  
...  

<p>Owing to its low cost, thermal stability and theoretically high capacity, Li<sub>2</sub>FeSiO<sub>4 </sub>has been a promising cathode material for high-energy-density Li-ion (Li<sup>+</sup>) battery system. However, its poor rate performance and high voltage polarisation attributed to innately slow Li<sup>+</sup> kinetics at room temperature, has fundamentally curbed its ascent into prominence. Here, the rate performance of Li<sub>2</sub>FeSiO<sub>4</sub> at high temperatures in electrolyte comprising molten salt (ionic liquid) was investigated. Subsequently, a comparison of the phase transition behaviour observed at both high-temperature and room-temperature cycling was elucidated. Our results show that remarkable rate performance with good cyclability in conjunction with low voltage polarisation is attained upon cycling of Li<sub>2</sub>FeSiO<sub>4</sub> at high temperatures, due to the faster phase transformation from unstable monoclinic structures to thermodynamically stable orthorhombic structures triggered by elevated temperature. What this study adds to the burgeoning body of research work relating to the silicates is that the initially slow phase transformation behaviour observed at room temperature can significantly be enhanced upon cycling at elevated temperatures.</p>


2016 ◽  
Vol 4 (4) ◽  
pp. 780-792 ◽  
Author(s):  
Smita Chaturvedi ◽  
Rabindranath Bag ◽  
Vasant Sathe ◽  
Sulabha Kulkarni ◽  
Surjeet Singh

Ho-doped sample simultaneously exhibits high-coercivity and enhanced remnant magnetization with a polar R3c symmetry at room temperature. The onset of R3c to Pnma phase transition is observed at high temperatures in the Ho-doped samples.


Science ◽  
2018 ◽  
Vol 362 (6419) ◽  
pp. 1144-1148 ◽  
Author(s):  
Victoria K. Davis ◽  
Christopher M. Bates ◽  
Kaoru Omichi ◽  
Brett M. Savoie ◽  
Nebojša Momčilović ◽  
...  

Fluoride ion batteries are potential “next-generation” electrochemical storage devices that offer high energy density. At present, such batteries are limited to operation at high temperatures because suitable fluoride ion–conducting electrolytes are known only in the solid state. We report a liquid fluoride ion–conducting electrolyte with high ionic conductivity, wide operating voltage, and robust chemical stability based on dry tetraalkylammonium fluoride salts in ether solvents. Pairing this liquid electrolyte with a copper–lanthanum trifluoride (Cu@LaF3) core-shell cathode, we demonstrate reversible fluorination and defluorination reactions in a fluoride ion electrochemical cell cycled at room temperature. Fluoride ion–mediated electrochemistry offers a pathway toward developing capacities beyond that of lithium ion technology.


2015 ◽  
Vol 51 (22) ◽  
pp. 4693-4696 ◽  
Author(s):  
Haodong Liu ◽  
Jing Xu ◽  
Chuze Ma ◽  
Ying Shirley Meng

A new O3–Na0.78Li0.18Ni0.25Mn0.583Ow is prepared as the cathode material for Na-ion batteries, delivering exceptionally high energy density and superior rate performance. No phase transformation happens through a wide range of sodium concentrations.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1535
Author(s):  
Yanjie Wang ◽  
Yingjie Zhang ◽  
Hongyu Cheng ◽  
Zhicong Ni ◽  
Ying Wang ◽  
...  

Lithium metal batteries have achieved large-scale application, but still have limitations such as poor safety performance and high cost, and limited lithium resources limit the production of lithium batteries. The construction of these devices is also hampered by limited lithium supplies. Therefore, it is particularly important to find alternative metals for lithium replacement. Sodium has the properties of rich in content, low cost and ability to provide high voltage, which makes it an ideal substitute for lithium. Sulfur-based materials have attributes of high energy density, high theoretical specific capacity and are easily oxidized. They may be used as cathodes matched with sodium anodes to form a sodium-sulfur battery. Traditional sodium-sulfur batteries are used at a temperature of about 300 °C. In order to solve problems associated with flammability, explosiveness and energy loss caused by high-temperature use conditions, most research is now focused on the development of room temperature sodium-sulfur batteries. Regardless of safety performance or energy storage performance, room temperature sodium-sulfur batteries have great potential as next-generation secondary batteries. This article summarizes the working principle and existing problems for room temperature sodium-sulfur battery, and summarizes the methods necessary to solve key scientific problems to improve the comprehensive energy storage performance of sodium-sulfur battery from four aspects: cathode, anode, electrolyte and separator.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazuaki Kisu ◽  
Sangryun Kim ◽  
Takara Shinohara ◽  
Kun Zhao ◽  
Andreas Züttel ◽  
...  

AbstractHigh-energy-density and low-cost calcium (Ca) batteries have been proposed as ‘beyond-Li-ion’ electrochemical energy storage devices. However, they have seen limited progress due to challenges associated with developing electrolytes showing reductive/oxidative stabilities and high ionic conductivities. This paper describes a calcium monocarborane cluster salt in a mixed solvent as a Ca-battery electrolyte with high anodic stability (up to 4 V vs. Ca2+/Ca), high ionic conductivity (4 mS cm−1), and high Coulombic efficiency for Ca plating/stripping at room temperature. The developed electrolyte is a promising candidate for use in room-temperature rechargeable Ca batteries.


2020 ◽  
Vol 13 (2) ◽  
pp. 562-570 ◽  
Author(s):  
Nana Wang ◽  
Yunxiao Wang ◽  
Zhongchao Bai ◽  
Zhiwei Fang ◽  
Xiao Zhang ◽  
...  

Developing novel gold nanoclusters as an electrocatalyst can facilitate a completely reversible reaction between S and Na, achieving advanced high-energy-density room-temperature sodium–sulfur batteries.


Sign in / Sign up

Export Citation Format

Share Document