scholarly journals Nanostructured Electrode Enabling Fast and Fullyreversible MnO2-to-Mn2+ Conversion in Mild Buffered Aqueous Electrolytes

Author(s):  
Mickaël Mateos ◽  
Kenneth D. Harris ◽  
Benoit Limoges ◽  
Véronique Balland

On account of their low-cost, earth abundance, eco-sustainability, and high theoretical charge storage capacity, MnO<sub>2</sub> cathodes have attracted a renewed interest in the development of rechargeable aqueous batteries. However, they currently suffer from limited gravimetric capacities when operating under the preferred mild aqueous conditions, which leads to lower performance as compared to similar devices operating in strongly acidic or basic conditions. Here, we demonstrate how to overcome this limitation by combining a well-defined 3D nanostructured conductive electrode, which ensures an efficient reversible MnO<sub>2</sub>-to-Mn<sup>2+</sup> conversion reaction, with a mild acid buffered electrolyte (pH 5). A reversible gravimetric capacity of 560 mA·h·g<sup>-1</sup> (close to the maximal theoretical capacity of 574 mA·h·g<sup>-1</sup> estimated from the MnO<sub>2</sub> average oxidation state of 3.86) was obtained over rates ranging from 1 to 10 A·g<sup>-1</sup>. The rate capability was also remarkable, demonstrating a capacity retention of 435 mA·h·g<sup>-1</sup> at a rate of 110 A·g<sup>-1</sup>. These good performances have been attributed to optimal regulation of the mass transport and electronic transfer between the three process actors, <i>i.e.</i> the 3D conductive scaffold, the MnO<sub>2</sub> active material filling it, and the soluble species involved in the reversible conversion reaction. Additionally, the high reversibility and cycling stability of this conversion reaction is demonstrated over 900 cycles with a Coulombic efficiency > 99.4 % at a rate of 44 A·g<sup>-1</sup>. Besides these good performances, also demonstrated in a Zn/MnO<sub>2</sub> cell configuration, we discuss the key parameters governing the efficiency of the MnO<sub>2</sub>-to-Mn<sup>2+</sup> conversion. Overall, the present study provides a comprehensive framework for the rational design and optimization of MnO<sub>2</sub> cathodes involved in rechargeable mild aqueous batteries.

2020 ◽  
Author(s):  
Mickaël Mateos ◽  
Kenneth D. Harris ◽  
Benoit Limoges ◽  
Véronique Balland

On account of their low-cost, earth abundance, eco-sustainability, and high theoretical charge storage capacity, MnO<sub>2</sub> cathodes have attracted a renewed interest in the development of rechargeable aqueous batteries. However, they currently suffer from limited gravimetric capacities when operating under the preferred mild aqueous conditions, which leads to lower performance as compared to similar devices operating in strongly acidic or basic conditions. Here, we demonstrate how to overcome this limitation by combining a well-defined 3D nanostructured conductive electrode, which ensures an efficient reversible MnO<sub>2</sub>-to-Mn<sup>2+</sup> conversion reaction, with a mild acid buffered electrolyte (pH 5). A reversible gravimetric capacity of 560 mA·h·g<sup>-1</sup> (close to the maximal theoretical capacity of 574 mA·h·g<sup>-1</sup> estimated from the MnO<sub>2</sub> average oxidation state of 3.86) was obtained over rates ranging from 1 to 10 A·g<sup>-1</sup>. The rate capability was also remarkable, demonstrating a capacity retention of 435 mA·h·g<sup>-1</sup> at a rate of 110 A·g<sup>-1</sup>. These good performances have been attributed to optimal regulation of the mass transport and electronic transfer between the three process actors, <i>i.e.</i> the 3D conductive scaffold, the MnO<sub>2</sub> active material filling it, and the soluble species involved in the reversible conversion reaction. Additionally, the high reversibility and cycling stability of this conversion reaction is demonstrated over 900 cycles with a Coulombic efficiency > 99.4 % at a rate of 44 A·g<sup>-1</sup>. Besides these good performances, also demonstrated in a Zn/MnO<sub>2</sub> cell configuration, we discuss the key parameters governing the efficiency of the MnO<sub>2</sub>-to-Mn<sup>2+</sup> conversion. Overall, the present study provides a comprehensive framework for the rational design and optimization of MnO<sub>2</sub> cathodes involved in rechargeable mild aqueous batteries.


Batteries ◽  
2018 ◽  
Vol 5 (1) ◽  
pp. 1 ◽  
Author(s):  
Alagar Paulraj ◽  
Yohannes Kiros ◽  
Mylad Chamoun ◽  
Henrik Svengren ◽  
Dag Noréus ◽  
...  

Fe-air or Ni-Fe cells can offer low-cost and large-scale sustainable energy storage. At present, they are limited by low coulombic efficiency, low active material use, and poor rate capability. To overcome these challenges, two types of nanostructured doped iron materials were investigated: (1) copper and tin doped iron (CuSn); and (2) tin doped iron (Sn). Single-wall carbon nanotube (SWCNT) was added to the electrode and LiOH to the electrolyte. In the 2 wt. % Cu + 2 wt. % Sn sample, the addition of SWCNT increased the discharge capacity from 430 to 475 mAh g−1, and charge efficiency increased from 83% to 93.5%. With the addition of both SWCNT and LiOH, the charge efficiency and discharge capacity improved to 91% and 603 mAh g−1, respectively. Meanwhile, the 4 wt. % Sn substituted sample performance is not on par with the 2 wt. % Cu + 2 wt. % Sn sample. The dopant elements (Cu and Sn) and additives (SWCNT and LiOH) have a major impact on the electrode performance. To understand the relation between hydrogen evolution and charge current density, we have used in operando charging measurements combined with mass spectrometry to quantify the evolved hydrogen. The electrodes that were subjected to prolonged overcharge upon hydrogen evolution failed rapidly. This insight could help in the development of better charging schemes for the iron electrodes.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Mingguang Wu ◽  
Wei Ni ◽  
Jin Hu ◽  
Jianmin Ma

Abstract Several emerging energy storage technologies and systems have been demonstrated that feature low cost, high rate capability, and durability for potential use in large-scale grid and high-power applications. Owing to its outstanding ion conductivity, ultrafast Na-ion insertion kinetics, excellent structural stability, and large theoretical capacity, the sodium superionic conductor (NASICON)-structured insertion material NaTi2(PO4)3 (NTP) has attracted considerable attention as the optimal electrode material for sodium-ion batteries (SIBs) and Na-ion hybrid capacitors (NHCs). On the basis of recent studies, NaTi2(PO4)3 has raised the rate capabilities, cycling stability, and mass loading of rechargeable SIBs and NHCs to commercially acceptable levels. In this comprehensive review, starting with the structures and electrochemical properties of NTP, we present recent progress in the application of NTP to SIBs, including non-aqueous batteries, aqueous batteries, aqueous batteries with desalination, and sodium-ion hybrid capacitors. After a thorough discussion of the unique NASICON structure of NTP, various strategies for improving the performance of NTP electrode have been presented and summarized in detail. Further, the major challenges and perspectives regarding the prospects for the use of NTP-based electrodes in energy storage systems have also been summarized to offer a guideline for further improving the performance of NTP-based electrodes.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4565
Author(s):  
Sanghyuk Park ◽  
Kwangho Park ◽  
Ji-Seop Shin ◽  
Gyeongbin Ko ◽  
Wooseok Kim ◽  
...  

We firstly introduce Er and Ga co-doped swedenborgite-structured YBaCo4O7+δ (YBC) as a cathode-active material in lithium-ion batteries (LIBs), aiming at converting the phase instability of YBC at high temperatures into a strategic way of enhancing the structural stability of layered cathode-active materials. Our recent publication reported that Y0.8Er0.2BaCo3.2Ga0.8O7+δ (YEBCG) showed excellent phase stability compared to YBC in a fuel cell operating condition. By contrast, the feasibility of the LiCoO2 (LCO) phase, which is derived from swedenborgite-structured YBC-based materials, as a LIB cathode-active material is investigated and the effects of co-doping with the Er and Ga ions on the structural and electrochemical properties of Li-intercalated YBC are systemically studied. The intrinsic swedenborgite structure of YBC-based materials with tetrahedrally coordinated Co2+/Co3+ are partially transformed into octahedrally coordinated Co3+, resulting in the formation of an LCO layered structure with a space group of R-3m that can work as a Li-ion migration path. Li-intercalated YEBCG (Li[YEBCG]) shows effective suppression of structural phase transition during cycling, leading to the enhancement of LIB performance in Coulombic efficiency, capacity retention, and rate capability. The galvanostatic intermittent titration technique, cyclic voltammetry and electrochemical impedance spectroscopy are performed to elucidate the enhanced phase stability of Li[YEBCG].


Author(s):  
Dominik Steinle ◽  
Zhen Chen ◽  
Huu-Dat Nguyen ◽  
Matthias Kuenzel ◽  
Cristina Iojoiu ◽  
...  

AbstractPolymer-based electrolytes potentially enable enhanced safety and increased energy density of lithium-metal batteries employing high capacity, transition metal oxide–positive electrodes. Herein, we report the investigation of lithium-metal battery cells comprising Li[Ni0.6Mn0.2Co0.2]O2 as active material for the positive electrode and a poly(arylene ether sulfone)-based single-ion conductor as the electrolyte incorporating ethylene carbonate (EC) as selectively coordinating molecular transporter. The resulting lithium-metal battery cells provide very stable cycling for more than 300 cycles accompanied by excellent average Coulombic efficiency (99.95%) at an anodic cutoff potential of 4.2 V. To further increase the achievable energy density, the stepwise increase to 4.3 V and 4.4 V is herein investigated, highlighting that the polymer electrolyte offers comparable cycling stability, at least, as common liquid organic electrolytes. Moreover, the impact of temperature and the EC content on the rate capability is evaluated, showing that the cells with a higher EC content offer a capacity retention at 2C rate equal to 61% of the capacity recorded at 0.05 C at 60 °C.


2020 ◽  
Vol 4 (2) ◽  
pp. 72
Author(s):  
Chao-Yu Lee ◽  
Fa-Hsing Yeh ◽  
Ing-Song Yu

In this study, we propose a mass production-able and low-cost method to fabricate the anodes of Li-ion battery. Carbonaceous anodes, integrated with thin amorphous silicon layers by plasma enhanced chemical vapor deposition, can improve the performance of specific capacity and coulombic efficiency for Li-ion battery. Three different thicknesses of a-Si layers (320, 640, and 960 nm), less than 0.1 wt% of anode electrode, were deposited on carbonaceous electrodes at low temperature 200 °C. Around 30 mg of a-Si by plasma enhanced chemical vapor deposition (PECVD) can improve the specific capacity ~42%, and keep coulombic efficiency of the half Li-ion cells higher than 85% after first cycle charge-discharge test. For the thirty cyclic performance and rate capability, capacitance retention can maintain above 96%. The thicker a-Si layers on carbon anodes, the better electrochemical performance of anodes with silicon-carbon composites we get. The traditional carbonaceous electrodes can be deposited a-Si layers easily by plasma enhanced chemical vapor deposition, which is a method with high potential for industrialization.


Author(s):  
Kyeong min Yang ◽  
Soochan Kim ◽  
Kaiwei Yang ◽  
Sungsik Choi ◽  
Misuk Cho ◽  
...  

Abstract Lithium-sulfur batteries (LSB) are highly promising candidates for next generation energy storage devices due to their high theoretical capacity and the low cost of sulfur. However, dissolution of lithium polysulfides (LPS) into electrolyte causes undesirable effects, resulting in loss of active materials, low Coulombic efficiency, and fast capacity fading. To address these issues, designed interlayers are inserted between a separator and S cathode to evaluate the effect of blocking of long chain LPS and catalytic conversion of LPS to Li2S2/Li2S on battery performance. In order to amplify the effect of interlayer, the Ni2P nanoparticles are electrochemically deposited on carbon fabric (CF) which exhibit excellent adsorption and conversion effect of LPS. A cell fabricated with the Ni2P@CF interlayer allows remarkable improvement in the capacity decay of 0.04% per cycle at 1 C for 1000 cycles and outstanding high rate capability. The cell delivered a capacity retention of 64% employing a current density of 8C.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Praeploy Chomkhuntod ◽  
Pawin Iamprasertkun ◽  
Poramane Chiochan ◽  
Phansiri Suktha ◽  
Montree Sawangphruk

AbstractScalable aqueous-based supercapacitors are ideal as future energy storage technologies due to their great safety, low cost, and environmental friendliness. However, the corrosion of metal current collectors e.g., aluminium (Al) foil in aqueous solutions limits their practical applications. In this work, we demonstrate a low-cost, scalable, and simple method to prepare an anti-corrosion current collector using a concept of hydrophobicity by coating the hydrophobic graphite passivation layer on the Al foil via a roll-to-roll coating technology at the semi-automation scale of production pilot plant of 18,650 cylindrical supercapacitor cells. All qualities of materials, electrodes, and production process are therefore in the quality control as the same level of commercial supercapacitors. In addition, the effects of the graphite coating layer have been fundamentally evaluated. We have found that the graphite-coated layer can improve the interfacial contact without air void space between the activated carbon active material layer and the Al foil current collector. Importantly, it can suppress the corrosion and the formation of resistive oxide film resulting in better rate capability and excellent cycling stability without capacitance loss after long cycling. The scalable supercapacitor prototypes here in this work may pave the way to practical 18,650 supercapacitors for sustainable energy storage systems in the future.


2019 ◽  
Author(s):  
Xiaohan Wu ◽  
Juliette Billaud ◽  
Iwan Jerjen ◽  
Federica Marone ◽  
Yuya Ishihara ◽  
...  

<div> <div> <div> <p>All-solid-state batteries are considered as attractive options for next-generation energy storage owing to the favourable properties (unit transference number and thermal stabilities) of solid electrolytes. However, there are also serious concerns about mechanical deformation of solid electrolytes leading to the degradation of the battery performance. Therefore, understanding the mechanism underlying the electro-mechanical properties in SSBs are essentially important. Here, we show three-dimensional and time-resolved measurements of an all-solid-state cell using synchrotron radiation x-ray tomographic microscopy. We could clearly observe the gradient of the electrochemical reaction and the morphological evolution in the composite layer. Volume expansion/compression of the active material (Sn) was strongly oriented along the thickness of the electrode. While this results in significant deformation (cracking) in the solid electrolyte region, we also find organized cracking patterns depending on the particle size and their arrangements. This study based on operando visualization therefore opens the door towards rational design of particles and electrode morphology for all-solid-state batteries. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document