scholarly journals A Predictive Model of the Temperature-Dependent Inactivation of Coronaviruses

Author(s):  
Te Faye Yap ◽  
Zhen Liu ◽  
Rachel A. Shveda ◽  
Daniel Preston

The COVID-19 pandemic has stressed healthcare systems and supply lines, forcing medical doctors to risk infection by decontaminating and reusing single-use medical personal protective equipment. The uncertain future of the pandemic is compounded by limited data on the ability of the responsible virus, SARS-CoV-2, to survive across various climates, preventing epidemiologists from accurately modeling its spread. However, a detailed thermodynamic analysis of experimental data on the inactivation of SARS-CoV-2 and related coronaviruses can enable a fundamental understanding of their thermal degradation that will help model the COVID-19 pandemic and mitigate future outbreaks. This paper introduces a thermodynamic model that synthesizes existing data into an analytical framework built on first principles, including the rate law and the Arrhenius equation, to accurately predict the temperature-dependent inactivation of coronaviruses. The model provides much-needed thermal decontamination guidelines for personal protective equipment, including masks. For example, at 70 °C, a 3-log (99.9%) reduction in virus concentration can be achieved in ≈ 3 minutes and can be performed in most home ovens without reducing the efficacy of typical N95 masks. The model will also allow for epidemiologists to incorporate the lifetime of SARS-CoV-2 as a continuous function of environmental temperature into models forecasting the spread of coronaviruses across different climates and seasons.

2020 ◽  
Author(s):  
Te Faye Yap ◽  
Zhen Liu ◽  
Rachel A. Shveda ◽  
Daniel Preston

The COVID-19 pandemic has stressed healthcare systems and supply lines, forcing medical doctors to risk infection by decontaminating and reusing single-use medical personal protective equipment. The uncertain future of the pandemic is compounded by limited data on the ability of the responsible virus, SARS-CoV-2, to survive across various climates, preventing epidemiologists from accurately modeling its spread. However, a detailed thermodynamic analysis of experimental data on the inactivation of SARS-CoV-2 and related coronaviruses can enable a fundamental understanding of their thermal degradation that will help model the COVID-19 pandemic and mitigate future outbreaks. This paper introduces a thermodynamic model that synthesizes existing data into an analytical framework built on first principles, including the rate law and the Arrhenius equation, to accurately predict the temperature-dependent inactivation of coronaviruses. The model provides much-needed thermal decontamination guidelines for personal protective equipment, including masks. For example, at 70 °C, a 3-log (99.9%) reduction in virus concentration can be achieved in ≈ 3 minutes and can be performed in most home ovens without reducing the efficacy of typical N95 masks. The model will also allow for epidemiologists to incorporate the lifetime of SARS-CoV-2 as a continuous function of environmental temperature into models forecasting the spread of coronaviruses across different climates and seasons.


2020 ◽  
Author(s):  
Te Faye Yap ◽  
Zhen Liu ◽  
Rachel A. Shveda ◽  
Daniel Preston

The COVID-19 pandemic has stressed healthcare systems and supply lines, forcing medical doctors to risk infection by decontaminating and reusing single-use medical personal protective equipment. The uncertain future of the pandemic is compounded by limited data on the ability of the responsible virus, SARS-CoV-2, to survive across various climates, preventing epidemiologists from accurately modeling its spread. However, a detailed thermodynamic analysis of experimental data on the inactivation of SARS-CoV-2 and related coronaviruses can enable a fundamental understanding of their thermal degradation that will help model the COVID-19 pandemic and mitigate future outbreaks. This paper introduces a thermodynamic model that synthesizes existing data into an analytical framework built on first principles, including the rate law and the Arrhenius equation, to accurately predict the temperature-dependent inactivation of coronaviruses. The model provides much-needed thermal decontamination guidelines for personal protective equipment, including masks. For example, at 70 °C, a 3-log (99.9%) reduction in virus concentration can be achieved in ≈ 3 minutes and can be performed in most home ovens without reducing the efficacy of typical N95 masks. The model will also allow for epidemiologists to incorporate the lifetime of SARS-CoV-2 as a continuous function of environmental temperature into models forecasting the spread of coronaviruses across different climates and seasons.


2020 ◽  
Author(s):  
Te Faye Yap ◽  
Zhen Liu ◽  
Rachel A. Shveda ◽  
Daniel Preston

The COVID-19 pandemic has stressed healthcare systems and supply lines, forcing medical doctors to risk infection by decontaminating and reusing medical personal protective equipment intended only for a single use. The uncertain future of the pandemic is compounded by limited data on the ability of the responsible virus, SARS-CoV-2, to survive across various climates, preventing epidemiologists from accurately modeling its spread. However, a detailed thermodynamic analysis of experimental data on the inactivation of SARS-CoV-2 and related coronaviruses can enable a fundamental understanding of their thermal degradation that will help mitigate the COVID-19 pandemic and future outbreaks. This paper introduces a thermodynamic model that synthesizes existing data into an analytical framework built on first principles, including the Arrhenius equation and the rate law, to accurately predict the temperature-dependent inactivation of coronaviruses. The model provides much-needed thermal sterilization guidelines for personal protective equipment, including masks, and will also allow epidemiologists to incorporate the lifetime of SARS-CoV-2 as a continuous function of environmental temperature into models forecasting the spread of coronaviruses across different climates and seasons.


2020 ◽  
Author(s):  
Te Faye Yap ◽  
Zhen Liu ◽  
Rachel A. Shveda ◽  
Daniel Preston

The COVID-19 pandemic has stressed healthcare systems and supply lines, forcing medical doctors to risk infection by decontaminating and reusing medical personal protective equipment intended only for a single use. The uncertain future of the pandemic is compounded by a lack of data on the ability of the responsible virus, SARS-CoV-2, to survive across various climates, preventing epidemiologists from accurately modeling its spread. However, existing data on the thermal inactivation of related coronaviruses can provide insights enabling progress towards understanding and mitigating COVID-19. This paper describes a thermodynamic model that synthesizes data from the literature to accurately predict the temperature-dependent inactivation of coronaviruses. The model provides much-needed thermal sterilization guidelines for personal protective equipment, including masks, and will also allow epidemiologists to incorporate temperature into models forecasting the spread of coronaviruses across different climates and seasons.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 801
Author(s):  
Talita Nicolau ◽  
Núbio Gomes Filho ◽  
Andrea Zille

In normal conditions, discarding single-use personal protective equipment after use is the rule for its users due to the possibility of being infected, particularly for masks and filtering facepiece respirators. When the demand for these protective tools is not satisfied by the companies supplying them, a scenario of shortages occurs, and new strategies must arise. One possible approach regards the disinfection of these pieces of equipment, but there are multiple methods. Analyzing these methods, Ultraviolet-C (UV-C) becomes an exciting option, given its germicidal capability. This paper aims to describe the state-of-the-art for UV-C sterilization in masks and filtering facepiece respirators. To achieve this goal, we adopted a systematic literature review in multiple databases added to a snowball method to make our sample as robust as possible and encompass a more significant number of studies. We found that UV-C’s germicidal capability is just as good as other sterilization methods. Combining this characteristic with other advantages makes UV-C sterilization desirable compared to other methods, despite its possible disadvantages.


2020 ◽  
Vol 41 (8) ◽  
pp. 958-958 ◽  
Author(s):  
Daniel Nogee ◽  
Anthony J. Tomassoni

AbstractDue to extreme shortages of personal protective equipment caused by the COVID-19 pandemic, many healthcare workers will be forced to recycle protective masks intended for disposal after a single use. We propose investigating the use of ultraviolet germicidal irradiation to sterilize masks of SARS-CoV-2 for safer reuse.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3339 ◽  
Author(s):  
Mostapha Tarfaoui ◽  
Mourad Nachtane ◽  
Ibrahim Goda ◽  
Yumna Qureshi ◽  
Hamza Benyahia

Currently, the emergence of a novel human coronavirus disease, named COVID-19, has become a great global public health concern causing severe respiratory tract infections in humans. Yet, there is no specific vaccine or treatment for this COVID-19 where anti-disease measures rely on preventing or slowing the transmission of infection from one person to another. In particularly, there is a growing effort to prevent or reduce transmission to frontline healthcare professionals. However, it is becoming an increasingly international concern respecting the shortage in the supply chain of critical single-use personal protective equipment (PPE). To that scope, we aim in the present work to provide a comprehensive overview of the latest 3D printing efforts against COVID-19, including professional additive manufacturing (AM) providers, makers and designers in the 3D printing community. Through this review paper, the response to several questions and inquiries regarding the following issues are addressed: technical factors connected with AM processes; recommendations for testing and characterizing medical devices that additively manufactured; AM materials that can be used for medical devices; biological concerns of final 3D printed medical parts, comprising biocompatibility, cleaning and sterility; and limitations of AM technology.


European View ◽  
2020 ◽  
Vol 19 (2) ◽  
pp. 172-179
Author(s):  
Andrew Glencross

This article examines the possibilities for negotiating the UK–EU health-security relationship after 2020. Health security, in the sense of measures to prevent and mitigate health emergencies, had played a marginal role in the UK–EU negotiations, but COVID-19 has greatly amplified this policy area’s significance. At the beginning of the pandemic, Brussels introduced significant measures to promote public health sovereignty, notably joint procurement and stockpiling of personal protective equipment. The UK went against the grain by limiting its involvement in joint procurement at a time when other countries were rushing to participate. UK participation in some EU health measures is possible on existing terms, but not joint procurement. This leaves the UK facing an uncertain future because of the potential risks associated with not participating in EU programmes, notably in terms of access to personal protective equipment supplies and possible market distortion resulting from new EU policies promoting stockpiling and reshoring. The politicisation of health security thus adds another complication to the post-Brexit EU–UK relationship.


2020 ◽  
Vol 191 (3) ◽  
pp. 328-334 ◽  
Author(s):  
Michael Lawson ◽  
Ahilan Kuganesan ◽  
Georgia Parry ◽  
Mohamed Khaldoun Badawy

Abstract Computed tomography fluoroscopy is now the preferred technique for percutaneous lung biopsies. However, concern regarding operator and patient radiation dose remains, which warrants further exploration into dose optimisation tools. This phantom-study aims to assess the dose reduction capabilities of RADPAD, a single-use patient drape designed to decrease staff exposure to scattered radiation. Dosemeters at the waist and eye levels were used to determine the whole-body and lens exposure during simulated lung biopsy procedures while using RADPAD and other combinations of personal protective equipment. RADPAD resulted in a 36% and 38% dose reduction for whole-body and eye exposure, respectively. However, when used in combination with radioprotective eyewear and aprons, RADPAD did not reduce the radiation dose further. Consequently, the use of standard personal protective equipment is a more cost-effective option for staff dose reduction. RADPAD is useful in the reduction of radiation dose to unprotected regions.


Author(s):  
Robert J. Fischer ◽  
Dylan H. Morris ◽  
Neeltje van Doremalen ◽  
Shanda Sarchette ◽  
M. Jeremiah Matson ◽  
...  

The unprecedented pandemic of SARS-CoV-2 has created worldwide shortages of personal protective equipment, in particular respiratory protection such as N95 respirators. SARS-CoV-2 transmission is frequently occurring in hospital settings, with numerous reported cases of nosocomial transmission highlighting the vulnerability of healthcare workers. In general, N95 respirators are designed for single use prior to disposal. Here, we have analyzed four readily available and often used decontamination methods: UV, 70% ethanol, 70C heat and vaporized hydrogen peroxide for inactivation of SARS-CoV-2 on N95 respirators. Equally important we assessed the function of the N95 respirators after multiple wear and decontamination sessions.


Sign in / Sign up

Export Citation Format

Share Document