scholarly journals Persistent Organic Room-Temperature Phosphorescence in Cyclohexane-Trans-1,2-Bisphthalimide Derivatives: The Dramatic Impact of Heterochiral vs. Homochiral Interactions

Author(s):  
Ludovic Favereau ◽  
Cassandre Quinton ◽  
Cyril Poriel ◽  
Thierry Roisnel ◽  
Denis Jacquemin ◽  
...  

Persistent metal-free Room-Temperature Phosphorescence (RTP) materials attract significant interest owing to the production of long-lived triplet excited states. Although several organic designs show RTP, the impact of intermolecular interactions on the triplet excitons stabilization and migrations remains hardly understood because obtaining different ordered intermolecular interactions while conserving identical molecular electronic properties is very challenging. We propose here a new strategy to circumvent this problem by taking advantage of the distinct molecular packing that can be found between enantiomer and racemic forms of a chiral molecule. Structural, photophysical and chiroptical investigations of chiral cyclohexane bisphthalimide derivatives showed that heterochiral and homochiral dimer interactions play a crucial role on the triplet excited state stabilization, resulting in higher RTP efficiency for enantiopure systems than for racemic one. This study paves the way to the use of molecular chirality to rationalize supramolecular properties arising from subtle intermolecular interactions.<br>

2020 ◽  
Author(s):  
Ludovic Favereau ◽  
Cassandre Quinton ◽  
Cyril Poriel ◽  
Thierry Roisnel ◽  
Denis Jacquemin ◽  
...  

Persistent metal-free Room-Temperature Phosphorescence (RTP) materials attract significant interest owing to the production of long-lived triplet excited states. Although several organic designs show RTP, the impact of intermolecular interactions on the triplet excitons stabilization and migrations remains hardly understood because obtaining different ordered intermolecular interactions while conserving identical molecular electronic properties is very challenging. We propose here a new strategy to circumvent this problem by taking advantage of the distinct molecular packing that can be found between enantiomer and racemic forms of a chiral molecule. Structural, photophysical and chiroptical investigations of chiral cyclohexane bisphthalimide derivatives showed that heterochiral and homochiral dimer interactions play a crucial role on the triplet excited state stabilization, resulting in higher RTP efficiency for enantiopure systems than for racemic one. This study paves the way to the use of molecular chirality to rationalize supramolecular properties arising from subtle intermolecular interactions.<br>


2021 ◽  
Author(s):  
Ping-Ru Su ◽  
Tao Wang ◽  
Pan-Pan Zhou ◽  
Xiao-Xi Yang ◽  
Xiao-Xia Feng ◽  
...  

Abstract Design and engineering of highly efficient emitting materials with assembly-induced luminescence, such as room temperature phosphorescence (RTP) and aggregation-induced emission (AIE), have stimulated extensive efforts. Here, we propose a new strategy to obtain size-controlled Eu3+-complex nanoparticles (Eu-NPs) with self-assembly induced luminescence (SAIL) characteristics without encapsulation or hybridization. Compared with previous RTP or AIE materials, the SAIL phenomena of increased luminescence intensity and lifetime in aqueous solution for the proposed Eu-NPs are due to the combined effect of self-assembly in confining the molecular motion and shielding the water quenching. As a proof of concept, we also show that this system can be further applied in bioimaging, temperature measurement and HClO sensing. The SAIL activity of the rare-earth (RE) system proposed here offers a further step forward on the roadmap for the development of RE light conversion systems and their integration in bioimaging and therapy applications.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ye Tao ◽  
Lele Tang ◽  
Qi Wei ◽  
Jibiao Jin ◽  
Wenbo Hu ◽  
...  

Organic ultralong room-temperature phosphorescence (OURTP) with a long-lived triplet excited state up to several seconds has triggered widespread research interests, but most OURTP materials are excited by only ultraviolet (UV) or blue light owing to their unique stabilized triplet- and solid-state emission feature. Here, we demonstrate that near-infrared- (NIR-) excitable OURTP molecules can be rationally designed by implanting intra/intermolecular charge transfer (CT) characteristics into H-aggregation to stimulate the efficient nonlinear multiphoton absorption (MPA). The resultant upconverted MPA-OURTP show ultralong lifetimes over 0.42 s and a phosphorescence quantum yield of ~37% under both UV and NIR light irradiation. Empowered by the extraordinary MPA-OURTP, novel applications including two-photon bioimaging, visual laser power detection and excitation, and lifetime multiplexing encryption devices were successfully realized. These discoveries illustrate not only a delicate design map for the construction of NIR-excitable OURTP materials but also insightful guidance for exploring OURTP-based nonlinear optoelectronic properties and applications.


2018 ◽  
Vol 6 (21) ◽  
pp. 5721-5726 ◽  
Author(s):  
Peisen Yuan ◽  
Xianfeng Qiao ◽  
Donghang Yan ◽  
Dongge Ma

Triplet excited states in exciplex-based organic light emitting diodes (OLEDs) can be wasted by transferring their energy to the host material in a system with smaller triplet energy levels.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Wen-Jing Qin ◽  
Ji-Rui Zhang ◽  
Xu-Ke Tian ◽  
Xiao-Gang Yang ◽  
Yuming Guo

A new strategy to achieve long-lived room temperature phosphorescence performance has been developed by the formation of donor-acceptor structure in coordination polymer, which features lifetime (40.22 ms) three orders of...


2021 ◽  
Author(s):  
Zhaoyang Zhu ◽  
Xue Zhang ◽  
Xing Guo ◽  
Qing-Hua Wu ◽  
Zhongxin Li ◽  
...  

Photosensitizers with long triplet excited state lifetimes are key to their efficient electron transfer or energy transfer processes. Herein, we report a novel class of cyclic trimeric BODIPY arrays which...


2018 ◽  
Vol 6 (29) ◽  
pp. 7890-7895 ◽  
Author(s):  
Jing Tan ◽  
Yunxia Ye ◽  
Xudong Ren ◽  
Wei Zhao ◽  
Dongmei Yue

A new strategy for efficient RTP from CDs by engineering the conjugation degree and controlling the hydrogen-bonding structure is proposed.


Sign in / Sign up

Export Citation Format

Share Document