Ultrathin Films of Pentacene on Ag(111): Charge-Transfer Bonding and Inter-Adsorbate Interactions

Author(s):  
Thomas Rockey ◽  
Michael Wilhelm ◽  
Hai-Lung Dai

Temperature programmed desorption (TPD) was used to examine the surface binding and intermolecular interactions of mono- and multi-layer thin films of the polycyclic aromatic acene, pentacene, deposited on a Ag(111) surface. The TPD spectra of sub-monolayer cov- erages revealed the presence of three distinct phases (denoted as α1, α2, and α3). The α1 phase was attributed to adsorption on step sites, while the α2 and α3 phases were assigned to adsorption on terrace sites under different local molecular densities. A physical model was constructed to describe the desorption kinetics from each of the three monolayer phases, including intermolecular repulsion from interfacial dipoles produced as a result of charge transfer bonding between pentacene and the Ag substrate. Fit analysis of the sub-monolayer spectra revealed desorption energies in the zero-coverage limit of 218±8, 166±8, and 162±9 kJ/mol for the α1, α2, and α3 phases, respectively. The interface dipoles of the α2 and α3 terrace adsorption sites were found to be effectively invariant (within error) and deduced as 18±7 and 23±10 D, respectively. These values suggest a partial charge transfer of 0.6 to 0.7 electrons from each pentacene molecule to the Ag substrate and is equivalent to 0.13 electrons per aromatic ring. The TPD spectra from the multilayer films also exhibited three phases. Leading edge analysis of the lowest temperature multilayer peak yielded a desorption energy of 121±15 kJ/mole, while simulations predicted desorption energies ca. 10-15 kJ/mole higher for the higher temperature phases. The three multilayer phases were assigned, from lowest to highest temperature, as an amorphous bulk film, a thin film, and polycrystalline structures.

2020 ◽  
Author(s):  
Thomas Rockey ◽  
Michael Wilhelm ◽  
Hai-Lung Dai

Temperature programmed desorption (TPD) was used to examine the surface binding and intermolecular interactions of mono- and multi-layer thin films of the polycyclic aromatic acene, pentacene, deposited on a Ag(111) surface. The TPD spectra of sub-monolayer cov- erages revealed the presence of three distinct phases (denoted as α1, α2, and α3). The α1 phase was attributed to adsorption on step sites, while the α2 and α3 phases were assigned to adsorption on terrace sites under different local molecular densities. A physical model was constructed to describe the desorption kinetics from each of the three monolayer phases, including intermolecular repulsion from interfacial dipoles produced as a result of charge transfer bonding between pentacene and the Ag substrate. Fit analysis of the sub-monolayer spectra revealed desorption energies in the zero-coverage limit of 218±8, 166±8, and 162±9 kJ/mol for the α1, α2, and α3 phases, respectively. The interface dipoles of the α2 and α3 terrace adsorption sites were found to be effectively invariant (within error) and deduced as 18±7 and 23±10 D, respectively. These values suggest a partial charge transfer of 0.6 to 0.7 electrons from each pentacene molecule to the Ag substrate and is equivalent to 0.13 electrons per aromatic ring. The TPD spectra from the multilayer films also exhibited three phases. Leading edge analysis of the lowest temperature multilayer peak yielded a desorption energy of 121±15 kJ/mole, while simulations predicted desorption energies ca. 10-15 kJ/mole higher for the higher temperature phases. The three multilayer phases were assigned, from lowest to highest temperature, as an amorphous bulk film, a thin film, and polycrystalline structures.


2020 ◽  
Vol 42 (4) ◽  
Author(s):  
Nguyen Mai Lan

Polycyclic Aromatic Hydrocarbons (PAHs) in aircraft soot are capable to distribute in the gas phase and particulate phase in chemical transformations in the atmosphere. The desorption of PAHs from the soot surface is a preliminary step in the study of the reactivity of particulate PAHs. The desorption kinetics of PAHs are measured from soot samples to determine desorption rate constants for different PAHs as a function of temperature and the binding energies between PAHs and soot. The kinetics of degradation of particulate PAHs were studied in the flow reactor. The soot samples previously deposited on a Pyrex tube are introduced into the reactor along its axis and the concentrations of PAHs adsorbed on soot are determined by the High-Performance Liquid Chromatography (HPLC) as a function of the desorption time. The results show a correlation between the size of PAHs and the thermodynamics of desorption: with the PAHs have the same number of carbon atoms, their energies of desorption are very similar and increase with this number. The activation energies EA and the number of carbon atoms in PAHs have a linear correlation. It is consistent with the additivity of the laws Van der Waals. The similarity between the activation energies of desorption of PAHs and the corresponding sublimation enthalpies is consistent with the similarity between the graphitic structure of soot and the structure of PAHs.


2019 ◽  
Vol 7 (32) ◽  
pp. 9856-9864 ◽  
Author(s):  
Di Yin ◽  
Ming-Liang Wang ◽  
Ying-Zi Wang ◽  
Xun Hu ◽  
Bo Liu ◽  
...  

A ternary nanocomposite of ZnMoNCs containing ZnO, ZnS and MoS2 has been synthesized by a facile strategy derived from polyoxometalate and ZIF-8, which shows high SERS activity by increased adsorption sites and synergistically improved charge transfer.


Author(s):  
Marie Davin ◽  
Elisa Renard ◽  
Kévin Lefébure ◽  
Marie-Laure Fauconnier ◽  
Gilles Colinet

Polycyclic aromatic hydrocarbons (PAHs) are health-concerning organic compounds that accumulate in the environment. Bioremediation and phytoremediation are studied to develop eco-friendly remediation techniques. In this study, the effects of two plants (Medicago sativa L. and Trifolium pratense L.) on the PAHs’ bioaccessibility in an aged-contaminated soil throughout a long-term rhizoremediation trial was investigated. A bioaccessibility measurement protocol, using Tenax® beads, was adapted to the studied soil. The aged-contaminated soil was cultured with each plant type and compared to unplanted soil. The bioaccessible and residual PAH contents were quantified after 3, 6 and 12 months. The PAHs’ desorption kinetics were established for 15 PAHs and described by a site distribution model. A common Tenax® extraction time (24 h) was established as a comparison basis for PAHs bioaccessibility. The rhizoremediation results show that M. sativa developed better than T. pratense on the contaminated soil. When plants were absent (control) or small (T. pratense), the global PAHs’ residual contents dissipated from the rhizosphere to 8% and 10% of the total initial content, respectively. However, in the presence of M. sativa, dissipation after 12 months was only 50% of the total initial content. Finally, the PAHs’ bioaccessible content increased more significantly in the absence of plants. This one-year trial brought no evidence that the presence of M. sativa or T. pratense on this tested aged-contaminated soil was beneficial in the PAH remediation process, compared to unplanted soil.


Sign in / Sign up

Export Citation Format

Share Document