scholarly journals Optimizing Nannochloropsis Growing Conditions for Biodiesel Production Through Analysis of Lipid Content

Author(s):  
Steven Liu ◽  
Devon Renock

<div><div><div><div><p>The algae are grown in two groups of three 2.5 L glass jugs spanning three concentration levels of nitrates and phosphates. A growing “f/2” medium is kept constant across trials. The algae are harvested using a flocculating solution of aluminum sulfate and vacuum filtration. The oven dry weight is obtained. Acid catalyzed in situ transesterification is used to achieve maximum conversion of fatty acids into fatty acid methyl esters (FAME), which are then analyzed using gas chromatography (GC) equipped with a flame ionization detector. Supelco 37-component FAME standards were used for identification and quantification of the FAMEs. Methyl pentadecanoate was used as an internal standard for quantification. HPLC-grade hexane used as solvent in GC analysis.</p></div></div></div></div>

2021 ◽  
Author(s):  
Steven Liu ◽  
Devon Renock

<div><div><div><div><p>The algae are grown in two groups of three 2.5 L glass jugs spanning three concentration levels of nitrates and phosphates. A growing “f/2” medium is kept constant across trials. The algae are harvested using a flocculating solution of aluminum sulfate and vacuum filtration. The oven dry weight is obtained. Acid catalyzed in situ transesterification is used to achieve maximum conversion of fatty acids into fatty acid methyl esters (FAME), which are then analyzed using gas chromatography (GC) equipped with a flame ionization detector. Supelco 37-component FAME standards were used for identification and quantification of the FAMEs. Methyl pentadecanoate was used as an internal standard for quantification. HPLC-grade hexane used as solvent in GC analysis.</p></div></div></div></div>


2021 ◽  
Vol 13 (4) ◽  
pp. 1769 ◽  
Author(s):  
Mohamed A. Zaki ◽  
Mohamed Ashour ◽  
Ahmed M. M. Heneash ◽  
Mohamed M. Mabrouk ◽  
Ahmed E. Alprol ◽  
...  

To achieve strong, successful and commercial aqua-biotechnological microalgae applications, screening, isolation, molecular identification, and physiological characterizations are needed. In the current study, a native cyanobacteria strain Arthrospira platensis NIOF17/003 was isolated from the surface water of El-Khadra Lake, a saline-alkaline lake located in Wadi El-Natrun, Egypt. The cyanobacterium was phylogenetically identified by 16S rRNA molecular marker and deposited in the GenBank database (accession number MW396472). The late exponential phase of A. platensis NIOF17/003 was reached at the 8th day of growth using Zarrouk medium, with a recorded dry weight (DW) of 0.845 g L−1. The isolated strain showed 52% of protein, 14% of carbohydrate, biomass productivity of 143.83 mg L−1 day−1, 8.5% of lipid, and lipid productivity of 14.37 mg L−1 day−1. In general, the values of cetane number, iodine value, cold filter plugging point (52.9, 85.5 g I2/100 g oil, and −2.2 °C, respectively) of the isolated fatty acid methyl esters are in accordance with those suggested by international standards. Besides, applying algal-free lipid (FL) as biodiesel byproduct in the production of rotifer (Brachionus plicatilis) revealed that a 0.6 g L−1 FL significantly increased the rotifer population females carrying eggs, confirming that FL can be used efficiently for B. plicatilis production. The current study concluded that the new isolate A. platensis NIOF17/003 is a promising strain for double sustainable use in biodiesel production and aquaculture feed.


RSC Advances ◽  
2015 ◽  
Vol 5 (88) ◽  
pp. 72146-72149 ◽  
Author(s):  
Liangzhen Cai ◽  
Decai Meng ◽  
Shaoqi Zhan ◽  
Xiaoxia Yang ◽  
Taoping Liu ◽  
...  

A SO3H and NH2+ functional carbon-based solid acid was used as a highly active heterogeneous catalyst for the transesterification of various carboxylic methyl esters with alcohols under mild conditions.


Author(s):  
Songquan Sun ◽  
Richard D. Leapman

Analyses of ultrathin cryosections are generally performed after freeze-drying because the presence of water renders the specimens highly susceptible to radiation damage. The water content of a subcellular compartment is an important quantity that must be known, for example, to convert the dry weight concentrations of ions to the physiologically more relevant molar concentrations. Water content can be determined indirectly from dark-field mass measurements provided that there is no differential shrinkage between compartments and that there exists a suitable internal standard. The potential advantage of a more direct method for measuring water has led us to explore the use of electron energy loss spectroscopy (EELS) for characterizing biological specimens in their frozen hydrated state.We have obtained preliminary EELS measurements from pure amorphous ice and from cryosectioned frozen protein solutions. The specimens were cryotransfered into a VG-HB501 field-emission STEM equipped with a 666 Gatan parallel-detection spectrometer and analyzed at approximately −160 C.


Author(s):  
R.D. Leapman ◽  
S.Q. Sun ◽  
S-L. Shi ◽  
R.A. Buchanan ◽  
S.B. Andrews

Recent advances in rapid-freezing and cryosectioning techniques coupled with use of the quantitative signals available in the scanning transmission electron microscope (STEM) can provide us with new methods for determining the water distributions of subcellular compartments. The water content is an important physiological quantity that reflects how fluid and electrolytes are regulated in the cell; it is also required to convert dry weight concentrations of ions obtained from x-ray microanalysis into the more relevant molar ionic concentrations. Here we compare the information about water concentrations from both elastic (annular dark-field) and inelastic (electron energy loss) scattering measurements.In order to utilize the elastic signal it is first necessary to increase contrast by removing the water from the cryosection. After dehydration the tissue can be digitally imaged under low-dose conditions, in the same way that STEM mass mapping of macromolecules is performed. The resulting pixel intensities are then converted into dry mass fractions by using an internal standard, e.g., the mean intensity of the whole image may be taken as representative of the bulk water content of the tissue.


2018 ◽  
Author(s):  
Haley Albright ◽  
Paul S. Riehl ◽  
Christopher C. McAtee ◽  
Jolene P. Reid ◽  
Jacob R. Ludwig ◽  
...  

<div>Catalytic carbonyl-olefin metathesis reactions have recently been developed as a powerful tool for carbon-carbon bond</div><div>formation. However, currently available synthetic protocols rely exclusively on aryl ketone substrates while the corresponding aliphatic analogs remain elusive. We herein report the development of Lewis acid-catalyzed carbonyl-olefin ring-closing metathesis reactions for aliphatic ketones. Mechanistic investigations are consistent with a distinct mode of activation relying on the in situ formation of a homobimetallic singly-bridged iron(III)-dimer as the active catalytic species. These “superelectrophiles” function as more powerful Lewis acid catalysts that form upon association of individual iron(III)-monomers. While this mode of Lewis acid activation has previously been postulated to exist, it has not yet been applied in a catalytic setting. The insights presented are expected to enable further advancement in Lewis acid catalysis by building upon the activation principle of “superelectrophiles” and broaden the current scope of catalytic carbonyl-olefin metathesis reactions.</div>


2019 ◽  
Author(s):  
Chem Int

Biodiesel produced by transesterification process from vegetable oils or animal fats is viewed as a promising renewable energy source. Now a day’s diminishing of petroleum reserves in the ground and increasing environmental pollution prevention and regulations have made searching for renewable oxygenated energy sources from biomasses. Biodiesel is non-toxic, renewable, biodegradable, environmentally benign, energy efficient and diesel substituent fuel used in diesel engine which contributes minimal amount of global warming gases such as CO, CO2, SO2, NOX, unburned hydrocarbons, and particulate matters. The chemical composition of the biodiesel was examined by help of GC-MS and five fatty acid methyl esters such as methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linoleneate were identified. The variables that affect the amount of biodiesel such as methanol/oil molar ratio, mass weight of catalyst and temperature were studied. In addition to this the physicochemical properties of the biodiesel such as (density, kinematic viscosity, iodine value high heating value, flash point, acidic value, saponification value, carbon residue, peroxide value and ester content) were determined and its corresponding values were 87 Kg/m3, 5.63 Mm2/s, 39.56 g I/100g oil, 42.22 MJ/Kg, 132oC, 0.12 mgKOH/g, 209.72 mgKOH/g, 0.04%wt, 12.63 meq/kg, and 92.67 wt% respectively. The results of the present study showed that all physicochemical properties lie within the ASTM and EN biodiesel standards. Therefore, mango seed oil methyl ester could be used as an alternative to diesel engine.


Sign in / Sign up

Export Citation Format

Share Document