scholarly journals Sulfur- and Nitrogen-Containing Porous Donor-Acceptor Polymers as Real-Time Optical and Chemical Sensors

Author(s):  
Yaroslav S. Kochergin ◽  
Yu Noda ◽  
Ranjit Kulkarni ◽  
Klára Škodáková ◽  
Ján Tarábek ◽  
...  

Fully aromatic, organic polymers have the advantage of being composed from light, abundant elements, and are hailed as candidates in electronic and optical devices “beyond silicon”, yet, applications that make use of their π-conjugated backbone and optical bandgap are lacking outside of heterogeneous catalysis. Herein, we use a series of sulfur- and nitrogen-containing porous polymers (SNPs) as real-time optical and electronic sensors reversibly triggered and re-set by acid and ammonia vapors. Our SNPs incorporate donor-acceptor and donor-donor motifs in extended networks and enable us to study the changes in bulk conductivity, optical bandgap, and fluorescence life-times as a function of π-electron de-/localization in the pristine and protonated states. Interestingly, we find that protonated donor-acceptor polymers show a decrease of the optical bandgap by 0.42 eV to 0.76 eV and longer fluorescence life-times. In contrast, protonation of a donor-donor polymer does not affect its bandgap; however, it leads to an increase of electrical conductivity by up to 25-fold and shorter fluorescence life-times. The design strategies highlighted in this study open new avenues towards useful chemical switches and sensors based on modular purely organic materials.

2019 ◽  
Author(s):  
Yaroslav S. Kochergin ◽  
Yu Noda ◽  
Ranjit Kulkarni ◽  
Klára Škodáková ◽  
Ján Tarábek ◽  
...  

Fully aromatic, organic polymers have the advantage of being composed from light, abundant elements, and are hailed as candidates in electronic and optical devices “beyond silicon”, yet, applications that make use of their π-conjugated backbone and optical bandgap are lacking outside of heterogeneous catalysis. Herein, we use a series of sulfur- and nitrogen-containing porous polymers (SNPs) as real-time optical and electronic sensors reversibly triggered and re-set by acid and ammonia vapors. Our SNPs incorporate donor-acceptor and donor-donor motifs in extended networks and enable us to study the changes in bulk conductivity, optical bandgap, and fluorescence life-times as a function of π-electron de-/localization in the pristine and protonated states. Interestingly, we find that protonated donor-acceptor polymers show a decrease of the optical bandgap by 0.42 eV to 0.76 eV and longer fluorescence life-times. In contrast, protonation of a donor-donor polymer does not affect its bandgap; however, it leads to an increase of electrical conductivity by up to 25-fold and shorter fluorescence life-times. The design strategies highlighted in this study open new avenues towards useful chemical switches and sensors based on modular purely organic materials.


2019 ◽  
Author(s):  
Ranjit Kulkarni ◽  
Yu Noda ◽  
Deepak K. Barange ◽  
Yaroslav S. Kochergin ◽  
Barbora Balcarova ◽  
...  

Fully-aromatic, two-dimensional covalent organic frameworks (2D COFs) are hailed as candidates for electronic and optical devices, yet to-date few applications emerged that make genuine use of their rational, predictive design principles and permanent pore structure. Here, we present a 2D COF made up of chemoresistant β-amino enone bridges and Lewis-basic triazine moieties that exhibits a dramatic real-time response in the visible spectrum and an increase in bulk conductivity by two orders of magnitude to a chemical trigger - corrosive HCl vapours. The optical and electronic response is fully reversible using a chemical switch (NH<sub>3</sub> vapours) or physical triggers (temperature or vacuum). These findings demonstrate a useful application of fully-aromatic 2D COFs as real-time responsive chemosensors and switches.


2019 ◽  
Author(s):  
Ranjit Kulkarni ◽  
Yu Noda ◽  
Deepak K. Barange ◽  
Yaroslav S. Kochergin ◽  
Barbora Balcarova ◽  
...  

Fully-aromatic, two-dimensional covalent organic frameworks (2D COFs) are hailed as candidates for electronic and optical devices, yet to-date few applications emerged that make genuine use of their rational, predictive design principles and permanent pore structure. Here, we present a 2D COF made up of chemoresistant β-amino enone bridges and Lewis-basic triazine moieties that exhibits a dramatic real-time response in the visible spectrum and an increase in bulk conductivity by two orders of magnitude to a chemical trigger - corrosive HCl vapours. The optical and electronic response is fully reversible using a chemical switch (NH<sub>3</sub> vapours) or physical triggers (temperature or vacuum). These findings demonstrate a useful application of fully-aromatic 2D COFs as real-time responsive chemosensors and switches.


2019 ◽  
Vol 52 (20) ◽  
pp. 7696-7703 ◽  
Author(s):  
Yaroslav S. Kochergin ◽  
Yu Noda ◽  
Ranjit Kulkarni ◽  
Klára Škodáková ◽  
Ján Tarábek ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4594
Author(s):  
Hayati Havlucu ◽  
Aykut Coşkun ◽  
Oğuzhan Özcan

Sports technology enhances athletes’ performance by providing feedback. However, interaction techniques of current devices may overwhelm athletes with excessive information or distract them from their performance. Despite previous research, design knowledge on how to interact with these devices to prevent such occasions are scarce. To address this gap, we introduce subtle displays as real-time sports performance feedback output devices that unobtrusively present low-resolution information. In this paper, we conceptualize and apply subtle displays to tennis by designing Tactowel, a texture changing sports towel. We evaluate Tactowel through a remote user study with 8 professional tennis players, in which they experience, compare and discuss Tactowel. Our results suggest subtle displays could prevent overwhelming and distracting athletes through three distinct design strategies: (1) Restricting the use excluding duration of performance, (2) using the available routines and interactions, and (3) giving an overall abstraction through tangible interaction. We discuss these results to present design implications and future considerations for designing subtle displays.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1865 ◽  
Author(s):  
Liberata Guadagno ◽  
Luigi Vertuccio ◽  
Carlo Naddeo ◽  
Marialuigia Raimondo ◽  
Giuseppina Barra ◽  
...  

A suitably modified resin film infusion (RFI) process was used for manufacturing carbon fiber-reinforced composites (CFRCs) impregnated with a resin containing nanocages of glycidyl polyhedral oligomeric silsesquioxane (GPOSS) for enhancing flame resistance and multi-wall carbon nanotubes (MWCNTs) to contrast the electrical insulating properties of the epoxy resin. The effects of the different numbers (7, 14 and 24) of the plies on the equivalent direct current (DC) and alternating current (AC) electrical conductivity were evaluated. All the manufactured panels manifest very high values in electrical conductivity. Besides, for the first time, CFRC strings were analyzed by tunneling atomic force microscopy (TUNA) technique. The electrical current maps highlight electrically conductive three-dimensional networks incorporated in the resin through the plies of the panels. The highest equivalent bulk conductivity is shown by the seven-ply panel characterized by the parallel (σ//0°) in-plane conductivity of 16.19 kS/m. Electrical tests also evidence that the presence of GPOSS preserves the AC electrical stability of the panels.


Author(s):  
Andrzej Miniewicz ◽  
Januz Parka ◽  
Stanislaw Bartkiewicz ◽  
Adam Januszko

2020 ◽  
Vol 56 (91) ◽  
pp. 14187-14190
Author(s):  
Tao Li ◽  
Xiaodong Yan ◽  
Wen-Da Zhang ◽  
Wang-Kang Han ◽  
Yong Liu ◽  
...  

A 2D covalent organic framework with intramolecular charge transfer, numerous redox-active groups and high electrical conductivity possesses a specific capacitance of 752 F g−1 and an energy density of 57 W h kg−1.


Sign in / Sign up

Export Citation Format

Share Document