scholarly journals Thermal heliox proteome. High-temperature heliox does not cause destruction of human respiratory system cells

2020 ◽  
Vol 92 (6) ◽  
pp. 69-72
Author(s):  
Sergey D. Varfolomeev ◽  
Aleksander A. Panin ◽  
Anna M. Ryabokon ◽  
Anna S. Kozyr ◽  
Aleksey S. Kononikhin ◽  
...  

Aim. Conducting a pilot study to assess the effect of thermal heliox on the state of the respiratory tract by studying of the exhaled breath condensate protein composition before the thermal heliox procedure, immediately after and after three hours of relaxation Materials and methods. A comparative study of the exhaled breath condensates (EBC) protein composition of five non-smoking healthy donors was carried out. The EBC was taken before the respiratory procedure, immediately after a 20-minute inhalation by mixture of He/O2 gases (70/30) heated to 70C and 3 hours later. The protein composition was determined by chromatography-mass spectrometric analysis after selective tryptic hydrolysis. The results were processed using the Mascot program and the UniProt database. Results. After the heliox procedure, the volume of the collected condensate (11.5 ml) decreases by an average of 32% and is practically restored after three hours of relaxation. Most proteins were consistent for all samples, regardless of the thermal heliox procedure. These are keratins, several proteins of the immune system (immunoglobulins, compliment proteins), tubulin. In samples after thermal heliox, the appearance of small amounts of additional proteins is observed. These are proteins of muscle metabolism (actin and calmodulin), fibrinogen, traces of hemoglobin, apolipoprotein, type B creatine kinase. After three hours of relaxation, tubulin disappears in the EBC. Conclusion. Most exhaled proteins are the same before, after the procedure, and for three hours of relaxation. The results obtained demonstrate the relative safety of the use of high temperature heliox as a therapeutic agent.


2022 ◽  
Vol 11 (1) ◽  
pp. 252
Author(s):  
Joanna Połomska ◽  
Barbara Sozańska

(1) Background: L-arginine (L-ARG) and its metabolites are involved in some aspects of asthma pathogenesis (airway inflammation, oxidative stress, bronchial responsiveness, collagen deposition). Published data indicate that lungs are a critical organ for the regulation of L-ARG metabolism and that alterations in L-ARG metabolism may be significant for asthma. The aim of this study was to assess the levels of L-ARG and its metabolites in pediatric patients with asthma in serum and exhaled breath condensate (EBC) by mass spectrometric analysis and compare them with non-asthmatic children. (2) Methods: Sixty-five children (37 pediatric patients with bronchial asthma and 28 healthy control subjects) aged 6–17 participated in the study. All participants underwent a clinical visit, lung tests, allergy tests with common aeroallergens, and serum and EBC collection. The levels of biomarkers were determined in both serum and EBC. Analytical chromatography was conducted using an Acquity UPLC system equipped with a cooled autosampler and an Acquity HSS T3 column. Mass spectrometric analysis was conducted using the Xevo G2 QTOF MS with electrospray ionization (ESI) in positive ion mode. (3) Results: Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) levels in serum and EBC did not differ significantly in asthmatic children and healthy control subjects. We found no correlation between forced expiratory volume in one second (FEV1) and L-ARG and its metabolites, as well as between interleukin-4 (IL-4) serum level and L-ARG and its metabolites. Concentrations of ADMA, SDMA, citrulline (CIT), and ornithine (ORN) were higher in serum than EBC in asthmatics and non-asthmatics. By contrast, concentrations of dimethylarginine (DMA) were higher in EBC than serum. ADMA/L-ARG, SDMA/L-ARG, and DMA/L-ARG ratios were significantly higher in EBC than in serum in asthmatics and in non-asthmatics. (4) Conclusions: Serum and EBC concentrations of L-ARG and its metabolites were not an indicator of pediatric bronchial asthma in our study.



2020 ◽  
Vol 69 (9) ◽  
pp. 1816-1818
Author(s):  
S. D. Varfolomeev ◽  
A. A. Panin ◽  
A. M. Ryabokon ◽  
A. S. Kozyr ◽  
A. S. Kononikhin ◽  
...  


Cytokine ◽  
2012 ◽  
Vol 58 (3) ◽  
pp. 361-367 ◽  
Author(s):  
Nancy L. Tateosian ◽  
María J. Costa ◽  
Diego Guerrieri ◽  
Analía Barro ◽  
Juan A. Mazzei ◽  
...  




2009 ◽  
Vol 296 (6) ◽  
pp. L987-L993 ◽  
Author(s):  
Charles R. Esther ◽  
Gunnar Boysen ◽  
Bonnie M. Olsen ◽  
Leonard B. Collins ◽  
Andrew J. Ghio ◽  
...  

Exhaled breath condensate (EBC) analyses promise simple and noninvasive methods to measure airway biomarkers but pose considerable methodological challenges. We utilized mass spectrometry to measure EBC purine biomarkers adenosine and AMP plus urea to control for dilutional variability in two studies: 1) a cross-sectional analysis of 28 healthy, 40 cystic fibrosis (CF), and 11 asthmatic children; and 2) a longitudinal analysis of 26 CF children before and after treatment of a pulmonary exacerbation. EBC adenosine, AMP, and urea were readily detected and quantified by mass spectrometry, and analysis suggested significant dilutional variability. Using biomarker-to-urea ratios to control for dilution, the EBC AMP-to-urea ratio was elevated in CF [median 1.3, interquartile range (IQR) 0.7–2.3] vs. control (median 0.75, IQR 0.3–1.4; P < 0.05), and the adenosine-to-urea ratio was elevated in asthma (median 1.5, IQR 0.9–2.9) vs. control (median 0.4, IQR 0.2–1.6; P < 0.05). Changes in EBC purine-to-urea ratios correlated with changes in percent predicted forced expiratory volume in 1 s (FEV1) ( r = −0.53 AMP/urea, r = −0.55 adenosine/urea; P < 0.01 for both) after CF exacerbation treatment. Similar results were observed using dilution factors calculated from serum-to-EBC urea ratios or EBC electrolytes, and the comparable ratios of EBC electrolytes to urea in CF and control (median 3.2, IQR 1.6–6.0 CF; median 5.5, IQR 1.4–7.7 control) validated use of airway urea as an EBC dilution marker. These results show that mass spectrometric analyses can be applied to measurement of purines in EBC and demonstrate that EBC adenosine-to-urea and AMP-to-urea ratios are potential noninvasive biomarkers of airways disease.



2016 ◽  
Vol 65 (11) ◽  
pp. 2745-2750 ◽  
Author(s):  
K. Yu. Fedorchenko ◽  
A. M. Ryabokon’ ◽  
A. S. Kononikhin ◽  
S. I. Mitrofanov ◽  
E. A. Mikhant’eva ◽  
...  


2018 ◽  
Vol 44 (3) ◽  
pp. 256-266 ◽  
Author(s):  
Don R. Bergfelt ◽  
John Lippolis ◽  
Michel Vandenplas ◽  
Sydney Davis ◽  
Blake A. Miller ◽  
...  


2020 ◽  
Vol 16 (7) ◽  
pp. 872-879
Author(s):  
Samin Hamidi

Background: Abuse of drugs is associated with several medical, forensic, toxicology and social challenges. “Drugs of abuse” testing is therefore an important issue. Objective: We propose a simple CE-based method for the quantification of amphetamine, codeine and morphine after direct injection of Exhaled Breath Condensate (EBC) by the aid of simple stacking mode and an off-line pre-concentration method. Methods: Using graphene oxide adsorbents, amphetamine, codeine and morphine were extracted from EBC in order to eliminate the proteins and other interferences. In addition to off-line method, an online stacking mode was applied to improve the analytical signal obtained from the instrument. Results: The validation parameters were experimented on the developed method based on the FDA guideline over concentration ranges of 12.5-100, 30-500 and 10-1250 ng/mL associated with amphetamine, codeine and morphine, respectively. Small volumes (around 100 μL) of EBC were collected using a lab-made setup and successfully analyzed using the proposed method where precisions and accuracies (within day and between days) were in accordance with the guideline (recommended less than 15 % for biological samples). The recovery tests were used to evaluate the matrix effect and data (94 to 105 %) showed that the proposed method can be applied in different EBC matrix samplings of subjects. Conclusion: The proposed method is superior for simultaneous determination of amphetamine, codeine and morphine over chromatographic analyses because it is fast and consumes fewer chemicals, with no derivatization step.



2020 ◽  
Vol 16 (8) ◽  
pp. 1032-1040
Author(s):  
Laleh Samini ◽  
Maryam Khoubnasabjafari ◽  
Mohamad M. Alimorad ◽  
Vahid Jouyban-Gharamaleki ◽  
Hak-Kim Chan ◽  
...  

Background: Analysis of drug concentrations in biological fluids is required in clinical sciences for various purposes. Among other biological samples, exhaled breath condensate (EBC) is a potential sample for follow up of drug concentrations. Methods: A dispersive liquid-liquid microextraction (DLLME) procedure followed by a validated liquid chromatography method was employed for the determination of budesonide (BDS) in EBC samples collected using a homemade setup. EBC is a non-invasive biological sample with possible applications for monitoring drug concentrations. The proposed analytical method is validated according to the FDA guidelines using EBC-spiked samples. Its applicability is tested on EBC samples collected from healthy volunteers receiving a single puff of BDS. Results: The best DLLME conditions involved the use of methanol (1 mL) as a disperser solvent, chloroform (200 μL) as an extraction solvent, and centrifugation rate of 3500 rpm for 5 minutes. The method was validated over a concentration range of 21-210 μg·L-1 in EBC. Inter- and intra-day precisions were less than 10% where the acceptable levels are less than 20%. The validated method was successfully applied for the determination of BDS in EBC samples. Conclusion: The findings of this study indicate that the developed method can be used for the extraction and quantification of BDS in EBC samples using a low cost method.



Sign in / Sign up

Export Citation Format

Share Document