scholarly journals Formulation and Evaluation of Brimonidine Maleate Nanolipid in Situ Gel

2020 ◽  
Vol 11 (4) ◽  
pp. 7071-7077
Author(s):  
Mohd Azharuddin ◽  
Theivendren Panner Selvam ◽  
Maya Sharma ◽  
Jayesh Dwivedi

The main objective of present research work was aimed to formulate and evaluate the nano lipid-based drug delivery system by incorporating a brimonidine maleate drug for ocular therapy. The patient can be improved by preparing nano lipid in situ gel as a vehicle by reducing the frequency of administration and increasing the ocular bioavailability.  Nanolipids were prepared by film hydration technique and then prepared nanolipids were incorporated into insitu gel by using various polymers like Carbopol 940 and HPMC K15M with different concentration. The various formulations prepared showed excellent and effective results for visual appearance, pH, and gellation study. It was further observed that formulations had  entrapment efficiency within the range of 67.20% to 97.3% for brimonidine maleate loaded insitu gel formulations. F1 entrapment efficiency was found to be 97.3% and shown maximum when compared with other formulations. From the drug release data, it was found that F1 (99.0%) shows maximum drug release compare to other formulations.

2020 ◽  
Vol 11 (4) ◽  
pp. 6837-6844
Author(s):  
Mohd Azharuddin ◽  
Theivendren Panner Selvam ◽  
Maya Sharma ◽  
Jayesh Dwivedi

The present research work was aimed to design, develop and evaluate the nano lipid-based drug delivery system by incorporating timolol hydrochloride drug for ocular therapy and improve the release of the drug through the ocular route. Nanolipids in situ gels were prepared by film hydration method involving two steps. First nano lipids were formulated with the help of organic solvents, and then they were incorporated into a gel by using gelling agents.  FTIR spectrum studies were carried out for drug and the formulations which reveal that there was no interaction between the drug and excipients used. The various formulations prepared were subjected for the different evaluation parameters, which showed good and effective results for visual appearance, pH, gelation study, viscosity and ocular irritation studies. It was further observed from this research work that formulation TF2 (HPMC K-15M 0.2%w/v and Carbopol 940 0.4%w/v) had a maximum entrapment efficiency of 97.30%, drug content of about 97.67% and drug release of about 84.29% for 10 hrs. Stability studies were carried out for TF2 formulation, and they found that they were stable throughout the study period. It was finally concluded from the present work that formulations prepared were more suitable and had good patient compliance compared to the eye drops.


1970 ◽  
Vol 1 (3) ◽  
pp. 43-49 ◽  
Author(s):  
Jovita Kanoujia ◽  
Kanchan Sonker ◽  
Manisha Pandey ◽  
Koshy M Kymonil ◽  
Shubhini A Saraf

The present research work deals with the formulation and evaluation of in-situ gelling system based on sol-to-gel transition for ophthalmic delivery of an antibacterial agent gatifloxacin, to overcome the problems of poor bioavailability and therapeutic response exhibited by conventional formulations based a sol-to-gel transition in the cul-de-sac upon instillation. Carbopol 940 was used as the gelling agent in combination with HPMC and HPMC K15M which acted as a viscosity enhancing agent. The prepared formulations were evaluated for pH, clarity, drug content, gelling capacity, bioadhesive strength and in-vitro drug release. In-vitro drug release data of optimized formulation (F12) was treated according to Zero, First, Korsmeyer Peppas and Higuchi kinetics to access the mechanism of drug release. The clarity, pH, viscosity and drug content of the developed formulations were found in range 6.0-6.8, 10-570cps, 82-98% respectively. The gel provided sustained drug release over an 8 hour period. The developed formulation can be used as an in-situ gelling vehicle to enhance ocular bioavailability and the reduction in the frequency of instillation thereby resulting in better patient compliance. Key Words: In-situ gelation; Gatifloxacin; Carbopol 940; HPMC K15M. DOI: http://dx.doi.org/10.3329/icpj.v1i3.9661 International Current Pharmaceutical Journal 2012, 1(3): 43-49


Author(s):  
Meesala. Srinivasa Rao ◽  
M. S Chandra Goud ◽  
C. V. Reddy

Meloxicam has short biological half-life and is rapidly eliminated, frequent oral administration is necessary to maintain its therapeutic concentration, but this can increase chances of missing dose. This makes Meloxicam a good applicant for oral sustained release formulation. The objective of study was to develop in-situ gel formulations of Meloxicam for sustained release to reduce the dosing frequency in the treatment of rheumatoid arthritis. Method of Ion sensitive in-situ gelation was used in this study. Meloxicam In-situ gel formulations were prepared by varying concentrations of sodium alginate as a bio-degradable gel forming polymer, CaCl2 as a cross-linking agent and Chitosan/ HPMCK4/HPMCK15/Guar gum/Gellan gum/ Xantha gum/pectin were used as drug release rate controlling polymers. The formulations F11-F18 were assessed for Physical appearance, pH, in-vitro drug release, viscosity, in-vitro gelling capacity and drug content. FTIR, DSC and in-vivo drug kinetics studies was conducted for Meloxicam, excipients used and optimized formulation. Formulations showed an optimum viscosity that will allow ease of administration and swallowing. All formulations are shown pH between4.7-4.9, floating lag time was 2-3sec and floated for >12 hrs. In vitro drug release studies reporting that commercially available product Meloxicam SR has showed 99.92% drug release in 8 hrs and out of eight formulations F11 showing in-vitro drug release of 99.52% over a 12hrs extended period. FTIR studies revealed no interaction between drug and excipients used. The results of In-vivo kinetic studies are approving the better performance of the optimized formulation in comparison to marketed formulation, The Cmax, Tmax, half-life AUC values are confirming the same thing. In conclusion, Formulation (F11) was selected as optimized formulations could be offered as shows optimum sustained drug release compared to commercial formulation. Hence Meloxicam containing Chitosan as drug release controll


2019 ◽  
Vol 11 (1) ◽  
pp. 198
Author(s):  
Shailaja Pashikanti ◽  
Jyothsna B.

Objective: The objective of the study was to develop floating in situ gel formulations of Ciprofloxacin that has a narrow absorption window and mainly absorbed in the proximal areas of GIT. These formulations increases the targeted action on bacteria for a longer time that can be used in the treatment of Helicobacter pylori (H. pylori) infections and urinary tract infections.Methods: In situ gel formulations were prepared by varying concentrations of sodium alginate as in situ gel forming bio-degradable polymer and calcium carbonate as a cross-linking agent. The formulations were evaluated for Physical appearance, pH, in vitro drug release, viscosity, in vitro floating behaviour, in vitro gelling capacity and drug content. FTIR was conducted for Ciprofloxacin, excipients used and optimized formulation.Results: All the formulations showed an optimum viscosity that will allow ease of administration and swallowing. Floating lag time of all formulations was between 32-70 seconds and floated for>12 h. The in vitro gelling capacity increased with increasing the polymer and gelling agent concentrations. Increase in polymer concentration decreased the rate and extent of the drug release. Among all the formulations, F4 containing 4% w/v of sodium alginate and 4% w/v of calcium carbonate showed sustained in vitro drug release (95.6%) over an extended period of 12 h. FTIR studies revealed no interaction between drug and excipients used. Drug release from the formulations followed First order kinetics with Fickian diffusion.Conclusion: Ciprofloxacin was successfully formulated as a pH-triggered floating in situ gelling system using sodium alginate.


Author(s):  
RAJASHRI B. AMBIKAR ◽  
ASHOK V. BHOSALE

Objective: Purpose of the study to design and formulate Diclofenac sodium (DIC) microsponges. Methods: With varied polymer: drug ratio DIC loaded microsponges were prepared with Eudragit RS100 polymer by quasi solvent diffusion method. Microsponges evaluated for particle size, entrapment efficiency, drug content, in vitro drug release, Fourier Transform Infrared Spectroscopy (FTIR), Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM). DIC loaded microsponges incorporated into ocular in situ gel to attained controlled release by microsponge and improved residence time by gelling system. Ocular in situ gel evaluated for pH, drug content determination, gelling capacity, in vitro drug release and sterility study. Results: DSER4 microsponge formulation having polymer to drug ratio 1:7 showed satisfactory production yield (68.13%), entrapment efficiency (62.86%), drug content (80.73%), requisite particle size (less than 10 µm) (7.52 µm) and in vitro release 87.94% after 6 h. Selected DSER4 formulation was incorporate into in situ gel. Carbopol 940 forms stiff gel at higher pH so used as a gelling agent, whereas Hydroxypropyl Methylcellulose E4M was used as a viscosity-enhancing agent for the formulation of in situ gel in varied compositions. In situ gel formulation IG4 showed sustained release of 76.92% till the end of 8 h and satisfactory gelling capacity so IG4 further evaluated for sterility test. Rheological studies reveal the sol-gel transition of in situ gel occur at the physiological condition to form stiff gel. Conclusion: Prepared in situ gel formulations showed sustained drug release for a period of 8 h, which is satisfactory for management of ocular pain.


Author(s):  
Mansi Dholakia ◽  
Richa Dave ◽  
Vaishali Thakkar ◽  
Hardik Rana ◽  
Mukesh Gohel ◽  
...  

Objective: The present research work aims at describing the formulation and evaluation of the ocular delivery system of moxifloxacin hydrochloride (MH) based on the concept of ion sensitive in situ gelations.Methods: In situ gel was prepared by a hot method using 0.6% of gelrite, 0.25% hydroxypropylmethylcellulose (HPMC K4M) and 0.023% tamarind gum as bioadhesive polymers for sustained drug release. Optimization was done by Box Behnken Design with different concentration of gelrite (X1), HPMC K4M (X2) and tamarind gum (X3) as independent variables. In situ gel was optimized based on mucoadhesion index (Y1), Gel strength (Y2) and in vitro drug release (Y3). Influence of the quantitative variable on the dependent variable was predicted by a polynomial equation.Results: Infrared spectroscopy excluded any interaction between drug and excipients. The selected independent variables significantly influenced the responses and were able to sustain the drug release. The prepared gel with a pH of 6.8 to 7.4 exhibited non-newtonian flow with no ocular irritation. The formulation remained stable with no change in pH and viscosity after 30 d of stability study.Conclusion: Thus, moxifloxacin hydrochloride (MH) in situ gel is a viable alternative to a conventional delivery system with the properties of sustained drug release, prolonged ocular retention, and improved corneal penetration.


Author(s):  
Uma Shankar Marakanam Srinivasan ◽  
Vishnu Vishnu ◽  
Sharmila Sharmila ◽  
Amod Kumar

Objective: The objective of this research work was to formulate and evaluate topical gel loaded with cefixime trihydrate, a third-generation cephalosporin antibiotic for the treatment of bacterial wound infections.Methods: The cefixime trihydrate gel was formulated using polymers such as Carbopol 940 and hydroxypropyl methylcellulose E4M in varying concentrations. Three different formulations were prepared and characterized physically for color, syneresis, spreadability, pH, drug content, and rheological properties. In vitro drug release in phosphate buffer pH 7.4 and antibacterial study were performed for the gel formulation to evaluate its therapeutic effect on wound infections.Results: The study demonstrated that the gel formulations showed promising results on their physical evaluation tests. The rheology behavior of the gel was shear-thinning flow type which indicated easy spreading of the gel. The drug release of the gel formulation F2 was selected as the best due to its highest drug release rate of 32.2% in comparison with the other two formulations after 2 h of the study. F2 formulation possessed the highest antibacterial activity as compared to other two formulations.Conclusion: A pioneering work was done on formulating cefixime trihydrate as a gel for topical administration. The antibacterial effect of the drug as gel formulation showed promising effect. We conclude that the cefixime trihydrate could be successively loaded into a gel formulation and can be used for effectively for wound infections like diabetic foot wounds.


2019 ◽  
Vol 9 (2) ◽  
pp. 89-96
Author(s):  
Abbaraju Krishna Sailaja ◽  
Juveria Banu

Aim: The aim of this investigation was to develop and characterize naproxen loaded chitosan nanoparticles by emulsion interfacial reaction method. Methodology: For emulsion interfacial reaction method chitosan was used as a polymer. In this method, eight formulations were prepared by varying drug to polymer concentration. Discussion: Out of eight formulations prepared using emulsion interfacial reaction method EI8 formulation was found to be the best formulation. The drug content was observed as 94.4%, entrapment efficiency and loading capacity were found to be 87.5% and 75%, respectively. The mean particle diameter was measured as 324.6nm and the Zeta potential value was found to be -42.4mv. In vitro drug release data showed 97.2% of drug release rate sustained up to 12hrs. Conclusion: The results clearly reveal that EI8 formulation having the highest amount of drug was considered as the best formulation because of its small mean particle diameter, good entrapment efficiency, and stability.


Author(s):  
Anjali Pandya ◽  
Rajani Athawale ◽  
Durga Puro ◽  
Geeta Bhagwat

Background: The research work involves development of PLGA biodegradable microspheres loaded with dexamethasome for intraocular delivery. Objective: To design and evaluate long acting PLGA microspheres for ocular delivery of dexamethasone. Method: Present formulation involves the development of long acting dexamethasone loaded microspheres composed of a biodegradable controlled release polymer, Poly(D, L- lactide-co-glycolide) (PLGA), for the treatment of posterior segment eye disorders intravitreally. PLGA with monomer ratio of 50:50 of lactic acid to glycolic acid was used to achieve a drug release up to 45 days. Quality by Design approach was utilized for designing the experiments. Single emulsion solvent evaporation technique along with high pressure homogenization was used to facilitate formation of microspheres. Results: Particle size evaluation, drug content and drug entrapment efficiency were determined for the microspheres. Particle size and morphology was observed using Field Emission Gun-Scanning Electron Microscopy (FEG-SEM) and microspheres were in the size range of 1-5 μm. Assessment of drug release was done using in vitro studies and transretinal permeation was observed by ex vivo studies using goat retinal tissues. Conclusion: Considering the dire need for prolonged therapeutic effect in diseases of the posterior eye, an intravitreal long acting formulation was designed. Use of biodegradable polymer with biocompatible degradation products was a rational approach to achieve this aim. Outcome from present research shows that developed microspheres would provide a long acting drug profile and reduce the frequency of administration thereby improving patient compliance.


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (01) ◽  
pp. 25-31
Author(s):  
M Priyanka ◽  
◽  
F. S. Dasankoppa ◽  
H. N Sholapur ◽  
NGN Swamy ◽  
...  

The poor bioavailability and the therapeutic effectiveness exhibited by the anti-depressant venlafaxine hydrochloride on oral administration is overcome by the use of ion-activated gel forming systems that are instilled as drops; these undergo gelation in the nasal cavity. The present study describes the design, characterization and evaluation of mucoadhesive nasal in situ gelling drug delivery of venlafaxine hydrochloride using different polymers like sodium alginate, HPMC and pectin in various concentrations. DSC studies revealed compatibility of the drug and excipients used. The in situ gels were characterized for physicochemical parameters, gelling ability, rheological studies, drug content, drug entrapment efficiency, in vitro mucoadhesive strength, water holding capacity, gel expansion coefficient and in vitro drug release studies. The amount of polymer blends was optimized using 23 full factorial design. The influence of experimental factors on percentage cumulative drug release at the end of 2 and 8 hours were investigated to get optimized formulation. The responses were analyzed using ANOVA and polynomial equation was generated for each response using multiple linear regression analysis. Optimized formulation, F9, containing 1.98% w/V sodium alginate, 0.64% w/V hydroxylpropyl methylcellulose, 0.99% w/V pectin showed percentage cumulative drug release of 19.33 and 80.44 at the end of 2 and 8 hours, respectively, which were close to the predicted values. The optimized formulation was subjected to stability study for three months at 300C /75% RH. The stability study revealed no significant change in pH, drug content and viscosity. Thus, venlafaxine hydrochloride nasal mucoadhesive in situ gel could be successfully formulated to improve bioavailability and to target the brain.


Sign in / Sign up

Export Citation Format

Share Document