scholarly journals WEATHER PERTURBATIONS ASSOCIATED WITH THE TRANSIT OF TROPICAL CYCLONES IN THE COAST OF BANGLADESH

2020 ◽  
Vol 4 (1) ◽  
pp. 23-27
Author(s):  
Razat Suvra Das ◽  
Sayedur Rahman Chowdhury ◽  
Milan Kumar Shiuli ◽  
Shubha Sarker

During the transition of tropical cyclone in the coast of Bangladesh, it is normally observed that there is a noticeable perturbation of weather parameters around the cyclone landfall zone. Through this research the extent of perturbation is assessed. To make the inventory 4 recent cyclones were selected that had made landfall in Bangladesh coast. They are cyclone MORA, cyclone ROANU, cyclone KOMEN and cyclone MAHASEN. Weather parameters selected to check their perturbation are wind speed, temperature, dew point temperature, atmospheric pressure, relative humidity and precipitation. The dispersion of these parameters from their normal state was measured also in accordance of their distance from the landfall area. To perform the task a time scale of 15 days was selected for each cyclone. Middle 3 days window were considered as most affected weather, 6 days prior and after the event were considered as normal (prevailing) weather. The Synop (observed) data was downloaded from the Ogimet.com. The data was then processed and decoded by Synop decoder and then further analyzed in MS Excel. In case of atmospheric pressure perturbation the highest perturbation was found 5.8 mb low on average than prevailing pressure up to 50 km from cyclone landfall. Wind speed perturbation was highest in 50 to 100 km area. Perturbation of temperature was highest in 0 to 50 km (about 2.1 °C low on average). Perturbation of dew point temperature was found negligible and humidity perturbation was found highest 6.63% high on average up to 50 km of landfall. In case of precipitation perturbation highest was found in 0 to 50 km area of landfall (38.76 mm high on average than prevailing weather), however precipitation perturbation was irregular beyond 100 km of landfall. The most perturbed weather parameter was found atmospheric pressure and the least affected was dew point temperature.

2020 ◽  
Vol 11 (6) ◽  
pp. 178-201
Author(s):  
Joaci Dos Santos Cerqueira ◽  
Helder Neves de Albuquerque ◽  
Mário Luiz Farias Cavalcanti ◽  
Francisco De Assis Salviano de Sousa

Thermoelectric power plants can directly cause environmental impacts with respect to emissions of atmospheric gases caused by combustion for operation, being the main agents: unburned hydrocarbons, carbon oxides, sulfur oxides, nitrogen oxides, volatile organic compounds and material particulate. Thus, this research aimed to measure and compare the instantaneous levels of the chemical compounds CO2, CO, SO2, noise, air temperature, relative humidity, dew point temperature, wind speed and luminescence in two peri-urban areas of the surrounding a thermoelectric power plant in the interior of Paraíba, Brazil. To this end, data were collected using environmental sensors (a Garmin Gpsmap 62sc GPS camera 5mp; a Canon powershot SX60HS 16.1MP LCD 3.0 semi-professional digital camera, 65x optical zoom; an ITMCO2-600 meter for measuring CO2 and CO; one ITMP-600 multifunctional meter for AVG/MAX/MIN/DIF measurement, temperature measurement, humidity measurement, sound level measurement, luminescence measurement and wind speed measurement; and a GasAlert Extreme SO2 Gas detector to measure concentrations of sulfur in the environment), from October 2015 to March 2017, during daytime, between 7:00am to 9:00am, with weekly frequency, with instantaneous sampling measurements being collected at the collection points, near the thermoelectric power plant (Area 1) and close to the BR/104 highway (Area 2). The results showed that the records through the environmental sensors were not significant among the areas surveyed regarding the values of CO, CO2, SO2, air temperature, relative humidity, dew point temperature and luminescence. Regarding the wind speed, the two areas showed little variation. The noise levels in Area 1, on the other hand, during the operation of the thermoelectric power plant in its fullness, there was an increase above the permitted level, according to current Brazilian regulations, causing damage to the health of the inhabitants of its surroundings, in addition to harming the fauna of the surrounding area. around, mainly, the birds that are driven away by the noise, and, consequently, reducing the diversity of the avifauna surrounding the Thermoelectric. Thus, the use of environmental sensors to monitor the air quality of this area is very important, thus serving as a comparative support for future studies, as well as establishing the genesis for an environmental database in this metropolitan region of Campina Grande/PB, Brazil.


2019 ◽  
Vol 19 (2) ◽  
pp. 1097-1113 ◽  
Author(s):  
Seohui Park ◽  
Minso Shin ◽  
Jungho Im ◽  
Chang-Keun Song ◽  
Myungje Choi ◽  
...  

Abstract. Long-term exposure to particulate matter (PM) with aerodynamic diameters < 10 (PM10) and 2.5 µm (PM2.5) has negative effects on human health. Although station-based PM monitoring has been conducted around the world, it is still challenging to provide spatially continuous PM information for vast areas at high spatial resolution. Satellite-derived aerosol information such as aerosol optical depth (AOD) has been frequently used to investigate ground-level PM concentrations. In this study, we combined multiple satellite-derived products including AOD with model-based meteorological parameters (i.e., dew-point temperature, wind speed, surface pressure, planetary boundary layer height, and relative humidity) and emission parameters (i.e., NO, NH3, SO2, primary organic aerosol (POA), and HCHO) to estimate surface PM concentrations over South Korea. Random forest (RF) machine learning was used to estimate both PM10 and PM2.5 concentrations with a total of 32 parameters for 2015–2016. The results show that the RF-based models produced good performance resulting in R2 values of 0.78 and 0.73 and root mean square errors (RMSEs) of 17.08 and 8.25 µg m−3 for PM10 and PM2.5, respectively. In particular, the proposed models successfully estimated high PM concentrations. AOD was identified as the most significant for estimating ground-level PM concentrations, followed by wind speed, solar radiation, and dew-point temperature. The use of aerosol information derived from a geostationary satellite sensor (i.e., Geostationary Ocean Color Imager, GOCI) resulted in slightly higher accuracy for estimating PM concentrations than that from a polar-orbiting sensor system (i.e., the Moderate Resolution Imaging Spectroradiometer, MODIS). The proposed RF models yielded better performance than the process-based approaches, particularly in improving on the underestimation of the process-based models (i.e., GEOS-Chem and the Community Multiscale Air Quality Modeling System, CMAQ).


Author(s):  
BH Poon ◽  
AW Gorny ◽  
KY Zheng ◽  
WK Cheong

Introduction: The Singapore Armed Forces (SAF) collaborated with the Meteorological Service Singapore (MSS) to study the relationship between weather parameters and the incidents of exertional heat injury (EHI) to mitigate the risk of EHI in a practical manner. Methods: Data from the SAF’s heat injury registry and MSS’ meteorological data from 2012 to 2018 were used to establish a consolidated dataset of EHI incidents and same-day weather parameters rank-ordered in deciles. Poisson regression modelling was used to determine the incidence rate ratios (IRRs) of the EHI, referencing the first decile of weather parameters. Two frames of analysis were performed - the first described the relationship between the weather parameters and the adjusted IRR for the same day (D), and the second described the relationship between the weather parameters and the adjusted IRR on the following day (D+1). Results: For wet-bulb temperature, the IRR on D+1 approximated unity for the first nine deciles but rose to 3.09 at the tenth decile. For dew-point temperature, the IRR on D+1 approximated unity for the first nine deciles but rose to 3.48 at the tenth decile. By designating a single dew-point temperature cut-off at  25.1°C (transition between the ninth and tenth decile), the adjusted IRR on D +1 was 2.26 on days with dew-point temperature  25.1°C,. Conclusion: Integrating the data from the SAF and MSS demonstrated that a dew-point temperature ≥ 25.1°C on D correlates statistically with the risk of EHI on D +1and could be used to supplement the risk mitigation system.


2014 ◽  
Vol 522-524 ◽  
pp. 34-37
Author(s):  
Ying Ying Xu ◽  
Bai Xing Yan ◽  
Hui Zhu

Dew is the condensation of atmospheric moisture on objects that have radiated sufficient heat to lower their temperature below the dew point temperature. Dew amount was collected by woodstick in Craex lasiocarpa which the main community at Sanjiang Plain. The average daily cumulated dew yield, which is the important parameter for dew harvesting, reach the peak in August or September. The result implies there are around one fifth days are unsuitable for dew condensation. Dew amount correlated negatively with wind speed.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hamish Steptoe ◽  
Nicholas Henry Savage ◽  
Saeed Sadri ◽  
Kate Salmon ◽  
Zubair Maalick ◽  
...  

AbstractHigh resolution simulations at 4.4 km and 1.5 km resolution have been performed for 12 historical tropical cyclones impacting Bangladesh. We use the European Centre for Medium-Range Weather Forecasting 5th generation Re-Analysis (ERA5) to provide a 9-member ensemble of initial and boundary conditions for the regional configuration of the Met Office Unified Model. The simulations are compared to the original ERA5 data and the International Best Track Archive for Climate Stewardship (IBTrACS) tropical cyclone database for wind speed, gust speed and mean sea-level pressure. The 4.4 km simulations show a typical increase in peak gust speed of 41 to 118 knots relative to ERA5, and a deepening of minimum mean sea-level pressure of up to −27 hPa, relative to ERA5 and IBTrACS data. The downscaled simulations compare more favourably with IBTrACS data than the ERA5 data suggesting tropical cyclone hazards in the ERA5 deterministic output may be underestimated. The dataset is freely available from 10.5281/zenodo.3600201.


2018 ◽  
Vol 19 (12) ◽  
pp. 217-220
Author(s):  
Michał Rubach ◽  
Konrad Waluś

The appearance of slush on the road is determined by the intensity of precipitation, ambient temperature, surface and dew point temperature, atmospheric pressure and road traffic. The condition of slush (mixture of snow, ice, sand and chemicals such as salt) significantly affects the scope of road safety and the acceleration achieved in the driving processes. The agglomeration of slush in the space between the wheel and the wheel arches increases the resistance of the vehicle movement and increases the load on the suspension system and the steering. Excess snow and ice increases the risk of damage to these systems and may affect the steering and stability of the vehicle. The process of "deposition" of slush is particularly noticeable in environmental conditions with high humidity, and ambient and surface temperatures are below zero degrees Celsius. The article presents the idea of a system for removing slush from wheelhouse liners.


Author(s):  
Hermes Ulises Ramirez-Sanchez ◽  
Alma Delia Ortiz-Bañuelos ◽  
Aida Lucia Fajardo-Montiel

Meteorological factors such as temperature, humidity, atmospheric pressure, wind speed and direction are associated with the dispersion of the SARS-CoV-2 virus through aerosols, particles <5μm are suspended in the air being infective at least three hours and dispersing from eight to ten meters. It has been shown that a 10-minute conversation, an infected person produces up to 6000 aerosol particles, which remain in the air from minutes to hours, depending on the prevailing weather conditions. Objective: To establish the correlation between meteorological variables, confirmed cases and deaths from COVID-19 in the 3 most important cities of Mexico. Methodology: A retrospective ecological study was conducted to evaluate the correlation of meteorological factors with COVID-19 cases and deaths in three Mexican cities. Results: The correlations between health and meteorological variables show that in the CDMX the meteorological variables that best correlate with the health variables are Temperature (T), Dew Point (DP), Wind speed (WS), Atmospheric Pressure (AP) and Relative Humidity (RH) in that order. In the ZMG are T, WS, RH, DP and AP; and in the ZMM are RH, WS, DP, T and AP. Conclusions In the 3 Metropolitan Areas showed that the meteorological factors that best correlate with the confirmed cases and deaths from COVID-19 are the T, RH; however, the correlation coefficients are low, so their association with health variables is less than other factors such as social distancing, hand washing, use of antibacterial gel and use of masks.


2021 ◽  
Vol 338 ◽  
pp. 01027
Author(s):  
Jan Taler ◽  
Bartosz Jagieła ◽  
Magdalena Jaremkiewicz

Cooling towers, or so-called evaporation towers, use the natural effect of water evaporation to dissipate heat in industrial and comfort installations. Water, until it changes its state of aggregation, from liquid to gas, consumes energy (2.257 kJ/kg). By consuming this energy, it lowers the air temperature to the wet-bulb temperature, thanks to which the medium can be cooled below the ambient temperature. Evaporative solutions are characterized by continuous water evaporation (approx. 1.5% of the total water flow) and low electricity consumption (high EER). Evaporative (adiabatic) cooling also has a positive effect on the reduction of electricity consumption of cooled machines. Lowering the relative humidity (RH) by approx. 2% lowers the wet-bulb temperature by approx. 0.5°C, which increases the efficiency of the tower, operating in an open circuit, expressed in kW, by approx. 5%, while reducing water consumption and treatment costs. The use of the M-Cycle (Maisotsenko cycle) to lower the temperature of the wet thermometer to the dew point temperature will reduce operating costs and increase the efficiency of cooled machines.


Sign in / Sign up

Export Citation Format

Share Document