scholarly journals Proteostasis in dendritic cells is controlled by the PERK signaling axis independently of ATF4

2020 ◽  
Vol 4 (2) ◽  
pp. e202000865
Author(s):  
Andreia Mendes ◽  
Julien P Gigan ◽  
Christian Rodriguez Rodrigues ◽  
Sébastien A Choteau ◽  
Doriane Sanseau ◽  
...  

In stressed cells, phosphorylation of eukaryotic initiation factor 2α (eIF2α) controls transcriptome-wide changes in mRNA translation and gene expression known as the integrated stress response. We show here that DCs are characterized by high eIF2α phosphorylation, mostly caused by the activation of the ER kinase PERK (EIF2AK3). Despite high p-eIF2α levels, DCs display active protein synthesis and no signs of a chronic integrated stress response. This biochemical specificity prevents translation arrest and expression of the transcription factor ATF4 during ER-stress induction by the subtilase cytotoxin (SubAB). PERK inactivation, increases globally protein synthesis levels and regulates IFN-β expression, while impairing LPS-stimulated DC migration. Although the loss of PERK activity does not impact DC development, the cross talk existing between actin cytoskeleton dynamics; PERK and eIF2α phosphorylation is likely important to adapt DC homeostasis to the variations imposed by the immune contexts.

2020 ◽  
Author(s):  
Andreia Mendes ◽  
Julien P. Gigan ◽  
Christian Rodriguez Rodrigues ◽  
Sébastien A. Choteau ◽  
Doriane Sanseau ◽  
...  

AbstractIn stressed cells, phosphorylation of eukaryotic initiation factor 2α (eIF2α) controls transcriptome-wide changes in mRNA translation and gene expression known as the integrated stress response (ISR). We show here that dendritic cells (DCs) display unusually high eIF2α phosphorylation, which is mostly caused by a developmentally regulated activation of the ER kinase PERK (EIF2AK3). Despite high p-eIF2α levels, differentiated DCs display active protein synthesis and no signs of a chronic ISR. eIF2α phosphorylation does not majorly impact DC differentiation nor cytokines production. It is however important to adapt protein homeostasis to the variations imposed on DCs by the immune or physiological contexts. This biochemical specificity prevents translation arrest and expression of the transcription factor ATF4 during ER-stress induction by subtilase cytotoxin or upon DC stimulation with bacterial lipopolysaccharides. This is also exemplified by the influence of the actin cytoskeleton dynamics on eIF2α phosphorylation and the migratory deficit observed in PERK-deficient DCs.


2004 ◽  
Vol 167 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Phoebe D. Lu ◽  
Heather P. Harding ◽  
David Ron

Stress-induced eukaryotic translation initiation factor 2 (eIF2) α phosphorylation paradoxically increases translation of the metazoan activating transcription factor 4 (ATF4), activating the integrated stress response (ISR), a pro-survival gene expression program. Previous studies implicated the 5′ end of the ATF4 mRNA, with its two conserved upstream ORFs (uORFs), in this translational regulation. Here, we report on mutation analysis of the ATF4 mRNA which revealed that scanning ribosomes initiate translation efficiently at both uORFs and ribosomes that had translated uORF1 efficiently reinitiate translation at downstream AUGs. In unstressed cells, low levels of eIF2α phosphorylation favor early capacitation of such reinitiating ribosomes directing them to the inhibitory uORF2, which precludes subsequent translation of ATF4 and represses the ISR. In stressed cells high levels of eIF2α phosphorylation delays ribosome capacitation and favors reinitiation at ATF4 over the inhibitory uORF2. These features are common to regulated translation of GCN4 in yeast. The metazoan ISR thus resembles the yeast general control response both in its target genes and its mechanistic details.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i12-i13
Author(s):  
Sofya Langman ◽  
Alberto Delaidelli ◽  
Yue Zhou Huang ◽  
Poul Sorensen

Abstract Medulloblastoma (MB) accounts for 20% of diagnosed brain tumors in children. Group 3 (G3) MB subtype is the most aggressive. Molecularly, G3 MB is characterized by MYC overexpression, which drives elevated mRNA translation in tumor cells. PERK is an eukaryotic translation initiation factor 2 (eIF2α) kinase that inhibits mRNA translation under endoplasmic reticulum (ER) stress conditions, such as in response to accumulation of unfolded proteins. When unfolded proteins accumulate in the ER, activated PERK phosphorylates eIF2α. This shuts down global translation and triggers integrated stress response (ISR) to help cells adapt through selective translation of mRNA encoding pro-survival proteins. High mRNA expression of PERK correlates with poor survival in G3 MB patients. In vitro, combination of ER or hypoxic stress with PERK knockdown induces apoptosis in MB cells. ISRIB is an ISR inhibitor that maintains translation rates despite eIF2α phosphorylation. Combining ISRIB with stress such as hypoxia induces apoptosis in MB cells and prevents accumulation of key ISR mediators such as ATF4. In addition, combination of ISRIB and hypoxia induces oxidative stress. Current G3 MB treatment regimens include vincristine, a known ISR inducer. Combination of ISRIB with vincristine amplifies vincristine-induced apoptosis, potentially suggesting novel therapeutic approach for MB. Our findings show that inhibition of ISR in G3 MB represents a powerful inducer of cancer cell death.


2012 ◽  
Vol 302 (1) ◽  
pp. L27-L35 ◽  
Author(s):  
Wesley M. Konsavage ◽  
Lianqin Zhang ◽  
Yuchieh Wu ◽  
Jeffrey S. Shenberger

Diverse environmental stresses stimulate eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, leading to a stress-resistant state characterized by global attenuation of protein synthesis and induction of cytoprotective genes. The signal transduction network culminating in these effects is referred to as the integrated stress response (ISR) or, when initiated by misfolded proteins within the endoplasmic reticulum (ER), the unfolded protein response (UPR). Given that we previously reported that exposure of 4-day-old Sprague-Dawley rats to 95% O2 (Ox) diminishes global pulmonary protein synthesis and increases eIF2α phosphorylation, we conducted the current study to determine whether Ox activates the ISR or UPR. We found that Ox-induced alterations in ER morphology of alveolar type II cells and interstitial fibroblasts were not associated with activation of the UPR sensors PERK or activating transcription factor (ATF) 6 or with X-box binding protein-1 mRNA splicing in whole lung extracts. Exposure to Ox enhanced ATF4 immunoreactivity and nuclear protein content, followed by a 2- and 5-fold increase in ATF3 protein and mRNA expression, respectively. The accumulation of nuclear ATF4 protein coincided with induction of glutamate-cysteine ligase catalytic subunit, an ISR-responsive gene. Immunohistochemistry revealed that changes in ATF3/4 expression were prominent in the alveolus, whereas primary cell culture implicated epithelial and endothelial cells as targets. Finally, induction of ISR intermediates in the intact lung occurred in the absence of the phosphorylation of PKR, JNK, ERK1/2, and p38 MAPK. These findings demonstrate that Ox activates the ISR within the newborn lung and highlight regional and cell-specific alterations in the expression ISR transcription factors that regulate redox balance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ai-Ling Tian ◽  
Qi Wu ◽  
Peng Liu ◽  
Liwei Zhao ◽  
Isabelle Martins ◽  
...  

AbstractThe integrated stress response manifests with the phosphorylation of eukaryotic initiation factor 2α (eIF2α) on serine residue 51 and plays a major role in the adaptation of cells to endoplasmic reticulum stress in the initiation of autophagy and in the ignition of immune responses. Here, we report that lysosomotropic agents, including azithromycin, chloroquine, and hydroxychloroquine, can trigger eIF2α phosphorylation in vitro (in cultured human cells) and, as validated for hydroxychloroquine, in vivo (in mice). Cells bearing a non-phosphorylatable eIF2α mutant (S51A) failed to accumulate autophagic puncta in response to azithromycin, chloroquine, and hydroxychloroquine. Conversely, two inhibitors of eIF2α dephosphorylation, nelfinavir and salubrinal, enhanced the induction of such autophagic puncta. Altogether, these results point to the unexpected capacity of azithromycin, chloroquine, and hydroxychloroquine to elicit the integrated stress response.


Blood ◽  
2019 ◽  
Vol 134 (20) ◽  
pp. 1697-1707 ◽  
Author(s):  
Jane-Jane Chen ◽  
Shuping Zhang

Chen and Zhang review the role of eukaryotic initiation factor 2α (eIF2α) in regulating the balance between protein synthesis and iron availability as part of the integrated stress response in erythroid cells.


2020 ◽  
Author(s):  
Josephine Ann Mun Yee Choo ◽  
Denise Schlösser ◽  
Valentina Manzini ◽  
Anna Magerhans ◽  
Matthias Dobbelstein

ABSTRACTThe integrated stress response (ISR) allows cells to rapidly shut down most of their protein synthesis in response to protein misfolding, amino acid deficiency, or virus infection. These stresses trigger the phosphorylation of the translation initiation factor eIF2alpha, which prevents the initiation of translation. Here we show that triggering the ISR drastically reduces the progression of DNA replication forks within one hour, thus flanking the shutdown of protein synthesis with immediate inhibition of DNA synthesis. DNA replication is restored by compounds that inhibit eIF2alpha kinases or re-activate eIF2alpha. Mechanistically, the translational shutdown blocks histone synthesis, promoting the formation of DNA:RNA hybrids (R-loops) which interfere with DNA replication. Histone depletion alone induces R-loops and compromises DNA replication. Conversely, histone overexpression or R-loop removal by RNaseH1 each restores DNA replication in the context of ISR and histone depletion. In conclusion, the ISR rapidly stalls DNA synthesis through histone deficiency and R-loop formation. We propose that this shutdown mechanism prevents potentially detrimental DNA replication in the face of cellular stresses.SIGNIFICANCEThe integrated stress response has long been explored regarding its immediate impact on protein synthesis. Translational shutdown represents an indispensable mechanism to prevent the toxicity of misfolded proteins and virus infections. Our results indicate that the shutdown mechanisms reach far beyond translation and immediately interfere with DNA synthesis as well. ISR depletes cells of new histones which induce accumulation of DNA:RNA hybrids. The impairment of DNA replication in this context supports cell survival during stress.Our work provides a link between the ISR and another subject of active research, i. e. the regulatory network of DNA replication forks.Graphical Abstract


2021 ◽  
Author(s):  
Lan Wang ◽  
Morgane Boone ◽  
Rosalie E Lawrence ◽  
Adam Frost ◽  
Peter Walter ◽  
...  

AbstractIn eukaryotic cells, stressors reprogram the cellular proteome by activating the integrated stress response (ISR). In its canonical form, stress-sensing kinases phosphorylate the eukaryotic translation initiation factor eIF2 (eIF2-P), which ultimately leads to reduced levels of ternary complex required for initiation of mRNA translation. Translational control is primarily exerted through a conformational switch in eIF2’s nucleotide exchange factor, eIF2B, which shifts from its active A-State conformation to its inhibited I-State conformation upon eIF2-P binding, resulting in reduced nucleotide exchange on eIF2. Here, we show functionally and structurally how a single histidine to aspartate point mutation in eIF2B’s β subunit (H160D) mimics the effects of eIF2-P binding by promoting an I-State like conformation, resulting in eIF2-P independent activation of the ISR. These findings corroborate our previously proposed (Schoof et al. 2021) A/I-State model of allosteric ISR regulation.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Carmela Sidrauski ◽  
Diego Acosta-Alvear ◽  
Arkady Khoutorsky ◽  
Punitha Vedantham ◽  
Brian R Hearn ◽  
...  

Phosphorylation of the α-subunit of initiation factor 2 (eIF2) controls protein synthesis by a conserved mechanism. In metazoa, distinct stress conditions activate different eIF2α kinases (PERK, PKR, GCN2, and HRI) that converge on phosphorylating a unique serine in eIF2α. This collection of signaling pathways is termed the ‘integrated stress response’ (ISR). eIF2α phosphorylation diminishes protein synthesis, while allowing preferential translation of some mRNAs. Starting with a cell-based screen for inhibitors of PERK signaling, we identified a small molecule, named ISRIB, that potently (IC50 = 5 nM) reverses the effects of eIF2α phosphorylation. ISRIB reduces the viability of cells subjected to PERK-activation by chronic endoplasmic reticulum stress. eIF2α phosphorylation is implicated in memory consolidation. Remarkably, ISRIB-treated mice display significant enhancement in spatial and fear-associated learning. Thus, memory consolidation is inherently limited by the ISR, and ISRIB releases this brake. As such, ISRIB promises to contribute to our understanding and treatment of cognitive disorders.


2021 ◽  
Vol 5 (1) ◽  
pp. e202101260
Author(s):  
David E Place ◽  
Parimal Samir ◽  
RK Subbarao Malireddi ◽  
Thirumala-Devi Kanneganti

The integrated stress response (ISR) regulates cellular homeostasis and cell survival following exposure to stressors. Cell death processes such as apoptosis and pyroptosis are known to be modulated by stress responses, but the role of the ISR in necroptosis is poorly understood. Necroptosis is an inflammatory, lytic form of cell death driven by the RIPK3-MLKL signaling axis. Here, we show that macrophages that have induced the ISR are protected from subsequent necroptosis. Consistent with a reduction in necroptosis, phosphorylation of RIPK1, RIPK3, and MLKL is reduced in macrophages pre-treated with ISR-inducing agents that are challenged with necroptosis-inducing triggers. The stress granule component DDX3X, which is involved in ISR-mediated regulation of pyroptosis, is not required for protecting ISR-treated cells from necroptosis. Disruption of stress granule assembly or knockdown of Perk restored necroptosis in pre-stressed cells. Together, these findings identify a critical role for the ISR in limiting necroptosis in macrophages.


Sign in / Sign up

Export Citation Format

Share Document