scholarly journals Axon terminals control endolysosome diffusion to support synaptic remodelling

2021 ◽  
Vol 4 (8) ◽  
pp. e202101105
Author(s):  
Beatrice Terni ◽  
Artur Llobet

Endolysosomes are acidic organelles formed by the fusion of endosomes with lysosomes. In the presynaptic compartment they contribute to protein homeostasis, the maintenance of vesicle pools and synaptic stability. Here, we evaluated the mobility of endolysosomes found in axon terminals of olfactory sensory neurons of Xenopus tropicalis tadpoles. F-actin restricts the motion of these presynaptic acidic organelles which is characterized by a diffusion coefficient of 6.7 × 10−3 μm2·s−1. Local injection of secreted protein acidic and rich in cysteine (SPARC) in the glomerular layer of the olfactory bulb disrupts the structure of synaptic F-actin patches and increases the presence and mobility of endolysosomal organelles found in axon terminals. The increased motion of endolysosomes is localized to the presynaptic compartment and does not promote their access to axonal regions for retrograde transportation to the cell body. Local activation of synaptic degradation mechanisms mediated by SPARC coincides with a loss of the ability of tadpoles to detect waterborne odorants. Together, these observations show that the diffusion of presynaptic endolysosomes increases during conditions of synaptic remodelling to support their local degradative activity.

2019 ◽  
Author(s):  
Shigenori Inagaki ◽  
Ryo Iwata ◽  
Masakazu Iwamoto ◽  
Takeshi Imai

SUMMARYSensory information is selectively or non-selectively inhibited and enhanced in the brain, but it remains unclear whether this occurs commonly at the peripheral stage. Here, we performed two-photon calcium imaging of mouse olfactory sensory neurons (OSNs) in vivo and found that odors produce not only excitatory but also inhibitory responses at their axon terminals. The inhibitory responses remained in mutant mice, in which all possible sources of presynaptic lateral inhibition were eliminated. Direct imaging of the olfactory epithelium revealed widespread inhibitory responses at OSN somata. The inhibition was in part due to inverse agonism toward the odorant receptor. We also found that responses to odor mixtures are often suppressed or enhanced in OSNs: Antagonism was dominant at higher odor concentrations, whereas synergy was more prominent at lower odor concentrations. Thus, odor responses are extensively tuned by inhibition, antagonism, and synergy, at the early peripheral stage, contributing to robust odor representations.


Physiology ◽  
2012 ◽  
Vol 27 (4) ◽  
pp. 200-212 ◽  
Author(s):  
Claudia Lodovichi ◽  
Leonardo Belluscio

In mammals, smell is mediated by odorant receptors expressed by sensory neurons in the nose. These specialized receptors are found both on olfactory sensory neurons' cilia and axon terminals. Although the primary function of ciliary odorant receptors is to detect odorants, their axonal role remains unclear but is thought to involve axon guidance. This review discusses findings that show axonal odorant receptors are indeed functional and capable of modulating neural connectivity.


2019 ◽  
Author(s):  
Joseph D. Zak ◽  
Gautam Reddy ◽  
Massimo Vergassola ◽  
Venkatesh N. Murthy

AbstractOdor landscapes contain complex blends of discrete molecules that each activate unique, overlapping populations of olfactory sensory neurons (OSNs). Despite the presence of hundreds of OSN subtypes in many animals, the overlapping nature of odor inputs may lead to saturation of neural responses at the early stages of stimulus encoding. Information loss due to saturation could be mitigated by normalizing mechanisms such as antagonism at the level of receptor-ligand interactions, whose existence and prevalence remains uncertain. By imaging OSN axon terminals in olfactory bulb glomeruli as well as OSN cell bodies within the olfactory epithelium in freely breathing mice, we found widespread antagonistic interactions in binary odor mixtures. In complex mixtures of up to 12 odorants, antagonistic interactions became stronger and more prevalent with increasing mixture complexity. Therefore, antagonism is a remarkably common feature of odor mixture encoding in olfactory sensory neurons and helps in normalizing activity to reduce saturation.


1972 ◽  
Vol 10 (3) ◽  
pp. 621-635
Author(s):  
A. J. PINCHING ◽  
T. P. S. POWELL

The termination of the centrifugal fibres running in the lateral olfactory tract to the glomerular layer of the rat olfactory bulb has been determined with the electron microscope; this has been done with material perfused at various times after section of the lateral olfactory tract, as well as after a combination of this lesion with the long-term degeneration of olfactory nerves. The axon terminals are sparse at the glomerular level, but undergo typical degenerative changes; they are distributed solely in the periglomerular region and intermediate zone. The most common post-synaptic profiles are the processes of periglomerular cells, but a few centrifugal fibres terminate on short-axon, tufted and mitral cell dendrites. Evidence is produced to suggest that the anterior olfactory nucleus does not project as far as the glomerular layer. The findings are discussed in relation to previous studies with normal material and silver degeneration methods on similar experimental material; the functional implications of the centrifugal pathways in the bulb are briefly discussed.


2021 ◽  
Author(s):  
Jérôme Lacoste ◽  
Hédi Soula ◽  
Angélique Burg ◽  
Agnès Audibert ◽  
Pénélope Darnat ◽  
...  

SUMMARYSpatiotemporal mechanisms generating neural diversity are fundamental for understanding neural processes. Here, we investigated how neural connection diversity arises from neurons coming from identical progenitors. In the dorsal thorax of Drosophila, rows of mechanosensory organs originate from the division of sensory organ progenitor (SOPs). We show that in each row of the notum, a central SOP divides first, then neighboring SOPs divide, and so on. This centrifugal wave of mitoses depends on cell-cell inhibitory interactions mediated by SOP cytoplasmic protrusions and Scabrous, a secreted protein interacting with the Delta/Notch complex. When scabrous was downregulated, the mitotic wave was abolished, axonal growth was more synchronous, axonal terminals had a complex branching pattern and fly behavior was impaired. We propose that the temporal order of progenitor divisions influences the birth order of sensory neurons which is critical for correct axon wiring and appropriate grooming behavior, supporting the idea that developmental timing controls neural connectivity.


1971 ◽  
Vol 9 (2) ◽  
pp. 305-345
Author(s):  
A. J. PINCHING ◽  
T. P. S. POWELL

The neurons of the glomerular layer of the rat olfactory bulb have been studied using Nissl staining and Golgi-Kopsch impregnation in light microscopy to define the size, shape and morphological features of individual cell somata, dendrites and axons; these have been correlated with electron-microscopic material in which fine-structural characteristics were also noted for each cell type, particularly synaptic specializations. Three neuron types are described: the external tufted and periglomerular cells of classical microscopy, and additional, superficial short-axon cells; a description of the glomerular arborizations of the mitral and deep tufted cells is also included. The tufted and mitral cells show large, non-spiny glomerular dendritic arborizations, having terminal varicosities, the external tufted cells being more limited in their branching than the deeper cells. External tufted cells have large somata and abundant cytoplasm containing stacks of Nissl material; their main dendrites are characterized by pale cytoplasm and a regular array of neurotubules. Reciprocal dendro-dendritic and somato-dendritic synapses are commonly found, the tufted/mitral cells containing spherical vesicles and contacting by means of asymmetrical membrane thickenings; the other profile involved is a gemmule containing large flattened vesicles and associated with a symmetrical thickening. The periglomerular cells are smaller, with a spiny glomerular arborization, as well as some other dendrites; all the dendrites of these cells tend to be of irregular outline. They have a dark nucleus and very little somatic cytoplasm; somatic and dendritic appendages are common and often contain large flattened vesicles. Synapses oriented from the dendritic shaft or gemmule also show such vesicles, invariably associated with symmetrical thickenings. The superficial short-axon cells are characterized by the entirely periglomerular distribution of their dendrites, which are varicose and rarely branch. Of intermediate soma dimensions, but containing dispersed Nissl material, these cells and their stem dendrites show no regions that can be designated as presynaptic. Features of axon initial segments, axo-somatic and axo-dendritic synapses are also described for each cell, as well as some unusual glial relationships. Reasons are adduced for relating the superficial short-axon cell to the axon terminal type containing small flattened vesicles, as well as for considering that the external tufted and periglomerular cells show the same synaptic specializations at their axon terminals as at their dendritic and somatic synapses. The cells of the glomerular layer are compared with those of the deeper layers of the bulb and atypical synaptic specializations discussed; some physiological implications of these findings are considered.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


Author(s):  
K. Cullen-Dockstader ◽  
E. Fifkova

Normal aging results in a pronounced spatial memory deficit associated with a rapid decay of long-term potentiation at the synapses between the perforant path and spines in the medial and distal thirds of the dentate molecular layer (DML), suggesting the alteration of synaptic transmission in the dentate fascia. While the number of dentate granule cells remains unchanged, and there are no obvious pathological changes in these cells associated with increasing age, the density of their axospinous contacts has been shown to decrease. There are indications that the presynaptic element is affected by senescence before the postsynaptic element, yet little attention has been given to the fine structure of the remaining axon terminals. Therefore, we studied the axon terminals of the perforant path in the DML across three age groups.5 Male rats (Fischer 344) of each age group (3, 24 and 30 months), were perfused through the aorta.


Sign in / Sign up

Export Citation Format

Share Document