scholarly journals Assessment of throwing arm biomechanics with a motusBASEBALLTM pitching sleeve during long-toss throws and pitching in college baseball pitchers

2019 ◽  
Vol 8 (4) ◽  
pp. 36-44
Author(s):  
Jeff T. Wight ◽  
Brittany Dowling ◽  
Jaclyn O’Loughlin

In baseball, long-toss throws are commonly used in return-to-throw programs and for general conditioning; however, the majority of these programs are based on conventional wisdom. Few studies have examined the biomechanics of long-toss throwing and the impact of throw distance. The purpose of this study was to determine if significant differences exist among commonly-used sub-maximal distance long-toss throws and mound pitching. Nineteen college baseball pitchers (19 ± 1.3 years; 88.3 ± 8.4 kg; and 73.9 ± 18.6 cm) wore a motusBASEBALL™ sleeve and sensor which measured peak elbow varus torque (VT), peak forearm angular velocity (Vmax), and peak arm-cocking angle (ACA). Each player completed five long-toss throws at distances of 27 m, 37 m, 46 m, 55 m and five pitches from a mound at regulation (18.4 m). There were no significant differences among throwing conditions for both VT and Vmax (p<0.05). For ACA, there was a significant increase (approximately 12°) as the long-toss distance increased. Coaches and trainers should be aware that sub-maximal distance long-toss throws (27 - 55 m+) generate high-magnitude throwing arm biomechanics (kinetics, velocities, range of motion) that approach or even exceed those generated during pitching; precaution needs to be used when implementing long-tosses into throwing and rehabilitation programs.

2020 ◽  
Vol 8 (5) ◽  
pp. 232596712092055
Author(s):  
Laurie Lee Devaney ◽  
Craig R. Denegar ◽  
Charles A. Thigpen ◽  
Adam S. Lepley ◽  
Cory Edgar ◽  
...  

Background: Shoulder and elbow injuries in baseball pitchers, which can lead to significant pain and disability, have been on the rise at all levels of play for 3 decades. Despite anatomic and neurophysiological relationships, neck mobility has not been explored as a contributor to shoulder and elbow injuries in baseball pitchers. Hypothesis: Impaired neck mobility will increase the risk of shoulder and elbow injuries in college baseball pitchers. Study Design: Cohort study; Level of evidence, 2. Methods: Posture, neck mobility, and shoulder passive range of motion were measured in healthy college baseball pitchers during the 2018 preseason. Time loss (days lost because of shoulder or elbow injuries) and patient-reported disability via Functional Arm Scale for Throwers (FAST) scores were used to dichotomize pitchers into injured and uninjured groups. Receiver operating characteristic curves were generated, and accuracy values and risk ratios (RRs) were calculated to assess the diagnostic utility of the physical measures. Time-to-injury analysis was conducted to assess the timing of injuries. Results: A total of 49 pitchers (mean age, 19.92 ± 1.48 years; mean height, 187.04 ± 6.02 cm; mean weight, 89.14 ± 12.08 kg) completed the study. There were 10 pitchers (20.4%) who sustained a time-loss injury >7 days because of a shoulder or elbow injury. A Cervical Flexion-Rotation Test (CFRT) finding on the dominant side of ≤39° resulted in over 9 times the increased risk of time-loss injuries (RR, 9.38 [95% CI, 1.28-68.49]). Time-to-injury analysis demonstrated differences between the 2 groups (χ2 = 7.667; P = .01). Pitchers with a >39.25° finding on the CFRT played a mean 109.4 of 112 days (95% CI, 105-114) before the injury, while pitchers with ≤39.25° only played 83.6 of 112 days (95% CI, 68-99). A CFRT finding of ≤38° (RR, 3.91 [95% CI, 1.23-12.39]), cervical flexion range of motion of ≤64° (RR, 10.56 [95% CI, 1.50-74.34]), and weight of >86.9 kg (RR, 10.42 [95% CI, 1.14-213.70]) were also associated with an increased risk of patient-reported pain and disability on the FAST pitcher module. Conclusion: College baseball pitchers with less neck mobility during the preseason had an increased risk of time loss and shoulder and elbow disability during the season. The predictive value of these measures as part of a risk screening profile should be further explored.


2021 ◽  
Vol 9 (1) ◽  
pp. 232596712096964
Author(s):  
Sumit Raniga ◽  
Joseph Cadman ◽  
Danè Dabirrahmani ◽  
David Bui ◽  
Richard Appleyard ◽  
...  

Background: Suture pullout during rehabilitation may result in loss of tension in the inferior glenohumeral ligament (IGHL) and contribute to recurrent instability after capsular plication, performed with or without labral repair. To date, the suture pullout strength in the IGHL is not well-documented. This may contribute to recurrent instability. Purpose/Hypothesis: A cadaveric biomechanical study was designed to investigate the suture pullout strength of sutures in the IGHL. We hypothesized that there would be no significant variability of suture pullout strength between specimens and zones. Additionally, we sought to determine the impact of early mobilization on sutures in the IGHL at time zero. We hypothesized that capsular plication sutures would fail under low load. Study Design: Descriptive laboratory study. Methods: Seven fresh-frozen cadaveric shoulders were dissected to isolate the IGHL complex, which was then divided into 18 zones. Sutures in these zones were attached to a linear actuator, and the resistance to suture pullout was recorded. A suture pullout strength map of the IGHL was constructed. These loads were used to calculate the load applied at the hand that would initiate suture pullout in the IGHL. Results: Mean suture pullout strength for all specimens was 61.6 ± 26.1 N. The maximum load found to cause suture pullout through tissue was found to be low, regardless of zone of the IGHL. Calculations suggest that an external rotation force applied to the hand of only 9.6 N may be sufficient to tear capsular sutures at time zero. Conclusion: This study did not provide clear evidence of desirable locations for fixation in the IGHL. However, given the low magnitude of failure loads, the results suggest the timetable for initiation of range-of-motion exercises should be reconsidered to prevent suture pullout through the IGHL. Clinical Relevance: From this biomechanical study, the magnitude of force required to cause suture pullout through the IGHL is met or surpassed by normal postoperative early range-of-motion protocols.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110346
Author(s):  
Yunyue Zhang ◽  
Zhiyi Sun ◽  
Qianlai Sun ◽  
Yin Wang ◽  
Xiaosong Li ◽  
...  

Due to the fact that intelligent algorithms such as Particle Swarm Optimization (PSO) and Differential Evolution (DE) are susceptible to local optima and the efficiency of solving an optimal solution is low when solving the optimal trajectory, this paper uses the Sequential Quadratic Programming (SQP) algorithm for the optimal trajectory planning of a hydraulic robotic excavator. To achieve high efficiency and stationarity during the operation of the hydraulic robotic excavator, the trade-off between the time and jerk is considered. Cubic splines were used to interpolate in joint space, and the optimal time-jerk trajectory was obtained using the SQP with joint angular velocity, angular acceleration, and jerk as constraints. The optimal angle curves of each joint were obtained, and the optimal time-jerk trajectory planning of the excavator was realized. Experimental results show that the SQP method under the same weight is more efficient in solving the optimal solution and the optimal excavating trajectory is smoother, and each joint can reach the target point with smaller angular velocity, and acceleration change, which avoids the impact of each joint during operation and conserves working time. Finally, the excavator autonomous operation becomes more stable and efficient.


2021 ◽  
Vol 9 (3) ◽  
pp. 232596712198910
Author(s):  
Tetsuya Matsuura ◽  
Yuki Takata ◽  
Toshiyuki Iwame ◽  
Jyoji Iwase ◽  
Kenji Yokoyama ◽  
...  

Background: Reducing the number of pitches thrown is regarded as the most effective way to prevent throwing injuries in youth baseball pitchers. However, few studies have compared the effectiveness of limiting the pitch count versus the limiting the number of innings pitched in terms of elbow injuries. Hypothesis: We hypothesized that, compared with inning limits, pitch count limits would lead to greater decreases in elbow pain, range of motion deficits, positive moving valgus stress test results, and the risk of capitellar osteochondritis dissecans (OCD). Study Design: Cohort study; Level of evidence, 3. Methods: This study retrospectively reviewed baseball pitchers aged 8 to 12 years in 2017 and 2018. Inning and pitch count limits in games were set to a daily maximum of 7 innings in 2017 and 70 pitches in 2018. Elbow pain, range of motion, and moving valgus stress test results were evaluated. The presence of capitellar OCD was assessed on ultrasonographic and radiographic images. Results: A total of 352 pitchers in 2017 and 367 pitchers in 2018 participated. The mean pitch count per game was lower in the pitch count limit (CL) group (52.5 ± 16.0) than in the inning limit (IL) group (98.2 ± 19.5) ( P < .001). Compared with the IL group, the CL group had significantly lower rates of elbow pain (40.9% vs 31.9%, respectively; P = .01) and reduced flexion (19.0% vs 10.6%, respectively; P = .001). Multivariate analysis revealed a significant association between elbow pain and age in both the IL and the CL groups ( P < .0001 and P = .02, respectively) and between OCD and elbow pain in the CL group ( P = .04). Conclusion: A pitch count limit of ≤70 pitches per day for baseball pitchers ≤12 years could be more protective against elbow pain and reduced flexion than a limit of ≤7 innings per day, but it may not be effective for reducing the risk of capitellar OCD.


Author(s):  
Shabnam Rezapour ◽  
Ramakrishnan S. Srinivasan ◽  
Jeffrey Tew ◽  
Janet K. Allen ◽  
Farrokh Mistree

A fail-safe network is one that mitigates the impact of different uncertainty sources and provides the most profitable level of service. This is achieved by having 1) a structurally fail-safe topology against rare but high magnitude stochastic events called disruptions and 2) an operationally fail-safe flow dynamic against frequent but low magnitude stochastic events called variations. A structurally fail-safe network should be robust and resilient against disruptions. Robustness and resilience respectively determine how well and how quickly disruptions are handled by the SN. Flow planning must be reliable in an operationally fail-safe supply network against variations to provide the most profitable service level to customers. We formulate the problem of designing/redesigning fail-safe supply networks as a compromise Decision Support Problem. We analyze the correlations among robustness, resilience, and profit for supply networks and propose a method for supply network managers to use when they need to find a compromise among robustness, resilience, and profit.


2019 ◽  
Vol 9 (20) ◽  
pp. 4200 ◽  
Author(s):  
Beilei Zhao ◽  
Jiguang Zhao ◽  
Cunyan Cui ◽  
Yongsheng Duan

To study the hydrodynamic ram effect caused by the debris hypervelocity impact on the satellite tank, a numerical simulation of the spherical debris impacting the satellite tank at the velocity of 7000 m/s was carried out based on ANSYS/LS-DYNA software. The attenuation law of debris velocity, the propagation process of the shock wave and the deformation of the tank walls were investigated. The influences of the liquid-filling ratio, the magnitude, and direction of angular velocity on the hydrodynamic ram effect were analyzed. Results show that the debris velocity decreased rapidly and the residual velocity was 263 m/s when the debris passed through the tank. The shock wave was hemispherical, and the pressure of shock wave was the smallest at the element with an angle of 90° to the impact line. The maximum diameter of the front perforation was larger than that of the back perforation and the bulge height on the front wall was smaller than that on the back wall. With the decrease of the liquid-filling ratio, the diameter of the perforations and bulge height decreased. When the debris impacted the satellite tank with the angular velocity in the x direction, the debris trajectory did not deflect. When the debris impacted the satellite tank with the angular velocities in the y and z direction, the debris trajectory deflected to the negative direction of the z axis and y axis, respectively. The magnitude of the angular velocity affects the residual velocity of debris and the diameter of perforations.


Sign in / Sign up

Export Citation Format

Share Document