scholarly journals Analyze China High-Speed Railway Ticket for Spring Transportation from the Perspective of Microeconomics

2017 ◽  
Vol 1 (1) ◽  
pp. 26
Author(s):  
Tianrui Kou

In recent ten years, the rapid development of China high-speed railway is called "China miracle", and it not only provides great convenience for people's daily life trip, but also greatly promotes the economic development. However, the annual spring transportation in the special period is still a great challenge to high-speed railway transportation, and this paper analyzes the high-speed railway ticket for spring transportation from the perspective of microeconomics, and then thinks for the solution.This paper specifically analyzes the problem that demand exceeds supply for high-speed railway ticket by using the theories of the demand elasticity of supply and demand and the influence of price on supply and demand, monopoly markets. In addition, opportunity cost, incomplete information and other economic principles are used to think about the theoretical reasons for the difficulty of buying tickets during the spring transportation. I have given my understanding for the two problems owned by China spring transportation, and the corresponding countermeasures and suggestions. For example, speed up the development of substitutes and carry out the mechanism of price fluctuation; In the ticket refunding mechanism, this paper boldly conceives the method to relieve the pressure through a reasonable and scientific ticket refunding mechanism. Finally, this paper starts from the source and find the key point to solve the problem of spring transportation in China by breaking the urban-rural dual structure.Hereafter the final conclusion was drawn: Although there are some problems to cope with the spring transport for the current China high-speed railway, it is believed that in the near future, the difficulty of buying a ticket in spring transportation will no longer hinder the homecoming of wanderers.

2019 ◽  
Vol 12 (4) ◽  
pp. 339-349
Author(s):  
Junguo Wang ◽  
Daoping Gong ◽  
Rui Sun ◽  
Yongxiang Zhao

Background: With the rapid development of the high-speed railway, the dynamic performance such as running stability and safety of the high-speed train is increasingly important. This paper focuses on the dynamic performance of high-speed Electric Multiple Unit (EMU), especially the dynamic characteristics of the bogie frame and car body. Various patents have been discussed in this article. Objective: To develop the Multi-Body System (MBS) model of EMU, verify whether the dynamic performance meets the actual operation requirements, and provide some useful information for dynamics and structural design of the proposed EMU. Methods: According to the technical characteristics of a typical EMU, a MBS model is established via SIMPACK, and the measured data of China high-speed railway is taken as the excitation of track random irregularity. To test the dynamic performance of the EMU, including the stability and safety, some evaluation indexes such as wheel-axle lateral forces, wheel-axle lateral vertical forces, derailment coefficients and wheel unloading rates are also calculated and analyzed in detail. Results: The MBS model of EMU has better dynamic performance especially curving performance, and some evaluation indexes of the stability and safety have also reached China’s high-speed railway standards. Conclusion: The effectiveness of the proposed MBS model is verified, and the dynamic performance of the MBS model can meet the design requirements of high-speed EMU.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Jianwen Ding ◽  
Lei Zhang ◽  
Jingya Yang ◽  
Bin Sun ◽  
Jiying Huang

The rapid development of high-speed railway (HSR) and train-ground communications with high reliability, safety, and capacity promotes the evolution of railway dedicated mobile communication systems from Global System for Mobile Communications-Railway (GSM-R) to Long Term Evolution-Railway (LTE-R). The main challenges for LTE-R network planning are the rapidly time-varying channel and high mobility, because HSR lines consist of a variety of complex terrains, especially the composite scenarios where tunnels, cuttings, and viaducts are connected together within a short distance. Existing researches mainly focus on the path loss and delay spread for the individual HSR scenarios. In this paper, the broadband measurements are performed using a channel sounder at 950 MHz and 2150 MHz in a typical HSR composite scenario. Based on the measurements, the pivotal characteristics are analyzed for path loss exponent, power delay profile, and tap delay line model. Then, the deterministic channel model in which the 3D ray-tracing algorithm is applied in the composite scenario is presented and validated by the measurement data. Based on the ray-tracing simulations, statistical analysis of channel characteristics in delay and Doppler domain is carried out for the HSR composite scenario. The research results can be useful for radio interface design and optimization of LTE-R system.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Zhengyu Xie ◽  
Limin Jia ◽  
Yong Qin ◽  
Li Wang

With the rapid development of high-speed railway in China, high-speed railway transport hub (HRTH) has become the high-density distribution center of passenger flow. In order to accurately detect potential safety hazard hidden in passenger flow, it is necessary to forecast the status of passenger flow. In this paper, we proposed a hybrid temporal-spatio forecasting approach to obtain the passenger flow status in HRTH. The approach combined temporal forecasting based on radial basis function neural network (RBF NN) and spatio forecasting based on spatial correlation degree. Computational experiments on actual passenger flow status from a specific bottleneck position and its correlation points in HRTH showed that the proposed approach is effective to forecast the passenger flow status with high precision.


Author(s):  
Diana Khairallah ◽  
Olivier Chupin ◽  
Juliette Blanc ◽  
Pierre Hornych ◽  
Jean-Michel Piau ◽  
...  

The design and durability of high-speed railway lines is a major challenge in the field of railway transportation. In France, 40 years of feedback on the field behavior of ballasted tracks led to improvements in the design rules. However, the settlement and wear of ballast, caused by dynamic stresses at high frequencies, remains a major problem on high-speed tracks leading to high maintenance costs. Studies have shown that this settlement is linked to the high acceleration produced in the ballast layer by high-speed trains traveling on the track, disrupting the granular assembly. The “Bretagne–Pays de la Loire” high-speed line (BPL HSL), with its varied subgrade conditions, represents the first large-scale application of asphalt concrete (GB) as the ballast sublayer. This line includes 77 km of conventional track with a granular sublayer of unbound granular material (UGM) and 105 km of track with an asphalt concrete sublayer under the ballast. During construction, instruments such as accelerometers, anchored deflection sensors, and strain gages, among others, were installed on four sections of the track. This paper examines the instrumentation as well as the acquisition system installed on the track. The data processing is explained first, followed by a presentation of the ViscoRail software, developed for modeling railway tracks. The bituminous section’s behavior and response is modeled using a multilayer dynamic response model, implemented in the ViscoRail software. A good match between experimental and calculated results is highlighted.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yun Wang ◽  
Yu Zhou ◽  
Xuedong Yan

As a sustainable transportation mode, high-speed railway (HSR) has been developing rapidly during the past decade in China. With the formation of dense HSR network, how to improve the utilization efficiency of train-sets (the carrying tools of HSR) has been a new research hotspot. Moreover, the emergence of railway transportation hubs has brought great challenges to the traditional train-sets’ utilization mode. Thus, in this paper, we address the issue of train-sets’ utilization problem with the consideration of railway transportation hubs, which consists of finding an optimal Train-set Circulation Plan (TCP) to complete trip tasks in a given Train Diagram (TD). An integer programming TCP model is established to optimize the train-set utilization scheme, aiming to obtain the one-to-one correspondence relationship among sets of train-sets, trip tasks, and maintenances. A genetic algorithm (GA) is designed to solve the model. A case study based on Nanjing and Shanghai HSR transportation hubs is made to demonstrate the practical significance of the proposed method. The results show that a more efficient TCP can be formulated by introducing train-sets being dispatched among different stations in the same hub.


2019 ◽  
Vol 20 (2) ◽  
pp. 113-137
Author(s):  
Carlos Augusto Olarte Bacares ◽  
Julien Brunel ◽  
Damien Sigaud

The arrival of a new operator on the Italian high-speed railway (HSR) market, its maintanance and its market share made Italian open access experience one of the most successful liberalization models in the HSR sector. Researchers noticed that since the entry of the new operator, expansion of Italian HSR market is mostly due to the presence of this new operator. The aim of this article is to establish whether there were some other characteristics of the Italian HSR market that may explain this success even if it may be in opposition with what theory commonly suggests about competition in HSR markets. This research tries to do a complementary analysis by making a comparison with another successful HSR market that is not already liberalized: the French HSR market. After retracing supply, demand and markets maturity of Rome–Milan and Paris–Marseille lines, results reveal that supply and demand evolutions in both markets were very similar, if not identical after the commissioning of HSR. It suggests that liberalization may not be the only explanation of the significant evolution of Italian HSR market but that the opening of new infrastructures may also lead to positive trends that remain until markets reach a high level of maturity. This maturity understood as the residual capacity of the network and partially determined by infrastructure improvement seems to be another variable that had influenced the success of NTV. Indeed, before liberalization, Italian HSR network was far from saturation that allowed new entrant to capture important market shares.


2019 ◽  
Vol 1 (1) ◽  
pp. 22-36 ◽  
Author(s):  
Chun-fang Lu

Abstract: China’s high-speed railway network has already achieved speeds of 350 km/h; however, this could be further increased to 400 km/h. After considering the development status and technical level of the high-speed railway system in China, this study indicates that there are four key technologies involved in improving its operational speed: the track, the electrical moving unit, the control system and the traction power supply. Through an experimental analysis, an evaluation index for the high-speed railway is then constructed based on four aspects: safety, comfort, intelligence and environmental protection. Using this system, the rationality of the high-speed railway speed-improvement plan can be scientifically evaluated. The results are of practical significance to the Chinese railway administration, as they can be used to formulate specific plans to increase rail speeds, and therefore promote the rapid development of the high-speed railway network in China.


Sign in / Sign up

Export Citation Format

Share Document