scholarly journals Quantum Physics Based Analytical Modeling of Drain Current of Single Electron Transistor with Island Made of Zigzag-Tungsten Disulfide Nanoribbon

Among many emerging nanoelectronic devices, single-electron transistor (SET) is one of the frontier device architectures that can offer high operating speed at an ultra-low power consumption. It exploits controlled electron tunneling to amplify current and retains its scalability even on an atomic scale. A new island based SET device architecture is proposed which is made of monolayer tungsten disulfide nanoribbon (WS2 NR) in zigzag pattern. The quantum physics based analytical model is developed in order to investigate the tunnelling drain current flowing through the proposed WS2 NR SET. It has been observed from the simulation study that the device current did not struggle in the coulomb blockade region whereas outside this region drain current value gradually decreases for longer nanoribbon likely due to formation of wider potential well in the island regime which helps to drop the rate of tunnelling electrons.

Author(s):  
Stephanus Hanurjaya ◽  
Miftahul Anwar ◽  
Meiyanto Eko Sulistyo ◽  
Irwan Iftadi ◽  
Subuh Pramono

<p class="Abstract">Single electron transistor (SET) has high potential for the development of quantum computing technologies in order to provide low power consumption electronics. For that purpose, many studies have been conducted to develop SET using dopants as quantum dots (QD). The working principle of SET basically is a single electron tunneling one by one through tunnel junction based on the coulomb blockade effect. This research will simulate various configurations of triple quantum dots single electron transistors (TQD-SET) using SIMON 2.0 with an experimental approach of MOSFET with dopants QD. The configurations used are series, parallel, and triangle configuration. The mutual capacitance (Cm), tunnel junctions (TJ), and temperature values of TQD-SET configurations are varied. The I-V characteristics are observed and analyzed for typical source-drain voltage (Vsd). it is found that the TQD series requires larger Vsd than parallel or triangular TQDs. On the other hands, the current in parallel TQD tends to be stable even though Cm is changed, and the current in the TQD triangle is strongly influenced by the Cm. By comparing these three configurations, it is observed that the tunnelling rate is higher for parallel TQD due to higher probability current moves through three dots by applying Vds.</p>


2009 ◽  
Vol 23 (12n13) ◽  
pp. 2647-2654 ◽  
Author(s):  
C. STAMPFER ◽  
E. SCHURTENBERGER ◽  
F. MOLITOR ◽  
J. GÜTTINGER ◽  
T. IHN ◽  
...  

We report on electronic transport experiments on a graphene single electron transistor as function of a perpendicular magnetic field. The device, which consists of a graphene island connected to source and drain electrodes via two narrow graphene constrictions is electronically characterized and the device exhibits a characteristic charging energy of approx. 3.5 meV. We investigate the homogeneity of the two graphene "tunnel" barriers connecting the single electron transistor to source and drain contacts as function of laterally applied electric fields, which are also used to electrostatically tune the overall device. Further, we focus on the barrier transparency as function of an applied perpendicular magnetic field and we find an increase of transparency for increasing magnetic field and a source-drain current saturation for magnetic fields exceeding 5 T.


2017 ◽  
Vol 28 (22) ◽  
pp. 225304 ◽  
Author(s):  
S A Dagesyan ◽  
V V Shorokhov ◽  
D E Presnov ◽  
E S Soldatov ◽  
A S Trifonov ◽  
...  

2013 ◽  
Vol 12 (06) ◽  
pp. 1350045 ◽  
Author(s):  
ANURAG SRIVASTAVA ◽  
BODDEPALLI SANTHIBHUSHAN ◽  
PANKAJ DOBWAL

The present paper discusses the investigation of electronic properties of anthracene-based single electron transistor (SET) operating in coulomb blockade region using Density Functional Theory (DFT) based Atomistix toolkit-Virtual nanolab. The charging energies of anthracene molecule in isolated as well as electrostatic SET environments have been calculated for analyzing the stability of the molecule for different charge states. Study also includes the analysis of SET conductance dependence on source/drain and gate potentials in reference to the charge stability diagram. Our computed charging energies for anthracene in isolated environment are in good agreement with the experimental values and the proposed anthracene SET shows good switching properties in comparison to other acene series SETs.


1992 ◽  
Vol 06 (13) ◽  
pp. 2321-2343 ◽  
Author(s):  
V.J. GOLDMAN ◽  
BO SU ◽  
J.E. CUNNINGHAM

We review experimental study of charge transport in nanometer double-barrier resonant tunneling devices. Heterostructure material is asymmetric: one barrier is substantially less transparent than the other. Resonant tunneling through size-quantized well states and single-electron charging of the well are thus largely separated in the two bias polarities. When the emitter barrier is more transparent than the collector barrier, electrons accumulate in the well; incremental electron occupation of the well is accompanied by Coulomb blockade leading to sharp steps of the tunneling current. When the emitter barrier is less transparent, the current reflects resonant tunneling of just one electron at a time through size-quantized well states; the current peaks and/or steps (depending on experimental parameters) appear in current-voltage characteristics. Magnetic field and temperature effects are also reviewed. Good agreement is achieved in comparison of many features of experimental data with simple theoretical models.


2007 ◽  
Vol 76 (17) ◽  
Author(s):  
J. J. Toppari ◽  
T. Kühn ◽  
A. P. Halvari ◽  
J. Kinnunen ◽  
M. Leskinen ◽  
...  

2015 ◽  
Vol 2 (1) ◽  
pp. 33-39
Author(s):  
Mudassir M. Husain ◽  
Maneesh Kumar

Using first-principles method the charging energy has been calculated; of the smallest single electron transistor (SET) consisting of only two carbon atoms while operating in coulumb blockade regime. The ethyne (C2H2) molecule is acting like a quantum dot (with discrete energy levels) and is weakly coupled to the gold electrodes (continuum). The quantum effects are significant and the conduction of current takes place through incoherent method via electron tunneling. The electronic levels of the molecule determine the electron transport properties. The molecule may be in several charged states from +2 to -2. It has been observed that the HOMO-LUMO gap is strongly reduced in solid state environment with metallic electrodes, as compared to the vacuum. This reduction is attributed to the image charges generated in the source and drain electrodes. This results in strong localization of charges in the molecule, a phenomenon addressed earlier. The charging energy has been calculated in vacuum and in SET environment. The interaction between molecule and the electrodes is treated self-consistently through Poisson equation. The charge stability diagram of the smallest molecular SET has been obtained.


Sign in / Sign up

Export Citation Format

Share Document