scholarly journals Fingerprint verification using the traveling salesman problem solution and decomposition of the vicinity of the minutiae

The article presents an example of verification of the fingerprint database by the method of solving the problem of a salesman using the decomposition of the neighborhood of the nearest minutes. The solution of this problem is resistant to linear, angular deformations, mixing of points. This method provides the correct solution for a small number of points, for a large number of points there is a cross section of the contours, the solution is not optimal. Therefore, to reduce the processing time and calculate the metric, a modified algorithm for solving the problem by the method of branches and boundaries, namely the alignment and exclusion of arcs on each cycle of the optimal route. Verification is based on the creation of local structures for each minute of the imprint, because it is the local structures that are resistant to deformation. Building global structures very often does not lead to good quality indicators, as there is a problem with the centering of the entire sample. A complete list of tests of fingerprint database templates during their verification by this method has been carried out. The use of decomposition of characteristic features provides greater stability when adding false and erasing true minutes. The results of the article show the values of pairwise comparisons of two templates for true and false tests. The indicators of false rejection rate (FRR), false access rate (FAR), single equivalent error rate (EER) were studied.

2021 ◽  
pp. 92-102
Author(s):  
Sergiy Rassomakhin ◽  
Olha Melkozerova ◽  
Oleksii Nariezhnii

The subject matter of the paper is the development of fingerprint local structures based on the new method of the minutia vicinity decomposition (MVD) for the solution to the task of fingerprint verification. It is an essential task because it is produced attempts to introduce biometric technology in different areas of social and state life: criminology, access control system, mobile device applications, banking. The goal is to develop real number vectors that can respond to criteria for biometric template protection schemes such as irreversibility with the corresponding accuracy of equal error rate (EER). The problem to be solved is the problem of accuracy in the case of verification because there are false minutiae, disappearing of truth minutiae and there are also linear and angular deformations. The method is the new method of MVD that used the level of graphs with many a point from 7 to 3. This scheme of decomposition is shown in this paper; such a variant of decomposition is never used in science articles. The following results were obtained: description of a new method for fingerprint verification. The new metric for creating vectors of real numbers were suggested – a minimal path for points in the graphs. Also, the algorithm for finding out minimal paths for points was proposed in the graphs because the classic algorithm has a problem in some cases with many points being 6. These problems are crossing and excluding arcs are in the path. The way of sorting out such problems was suggested and examples are given for several points are 20. Results of false rejection rate (FRR), false acceptance rate (FAR), EER are shown in the paper. In this paper, the level of EER is 33 % with full search. 78400 false and 1400 true tests were conducted. The method does not use such metrics as distances and angles, which are used in the classical method of MVD and will be used in future papers. This result is shown for total coincidences of real number, not a similarity that it is used at verifications. It is a good result in this case because the result from the method index-of-max is 40 %.


Currently, an attempt is being made to introduce biometric technologies in various spheres of public and state life: forensics, access control systems, applications on mobile devices, banking, etc. The problem of accuracy remains an open question for discussion, because when solving the problem of verification of biometric samples there are problems of addition or disappearance of reference points, deformation of distances between them, linear and angular displacements of the whole sample. Also, the developed biometric systems do not meet all the requirements of information security, namely the integrity, accessibility, authenticity, indisputability, observability and confidentiality. The article presents an analysis of the method of decomposition of minefields during fingerprint verification, describes its advantages and disadvantages in comparison with other methods. It is based on the creation of local structures for each minute of the imprint, because it is the local structures that are resistant to mixing, angular and linear displacement of points. Building global structures often does not lead to good accuracy, as there is a problem of centering the entire sample. A complete list of tests of samples of the database of fingerprints during their verification by this method. An algorithm for constructing a code for an arbitrary minution and an algorithm for comparing two sample templates are described. The results of the article show the value of pairwise comparisons of two templates for true and false tests. The indicators of false rejection rate (FRR), false access rate (FAR), single equivalent error rate (EER) were studied.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Miron Pavluš ◽  
Rostislav Tomeš ◽  
Lukáš Malec

36 years ago, Thomas Saaty introduced a new mathematical methodology, called Analytic Hierarchy Process (AHP), regarding the decision-making processes. The methodology was widely applied by Saaty and by other authors in the different human activity areas, like planning, business, education, healthcare, etc. but, in general, in the area of management. In this paper, we provide two new proofs for well-known statement that the maximal eigenvalue λmax is equal to n for the eigenvector problem Aw=λw, where A is, so-called, the consistent matrix of pairwise comparisons of type n×n (n≥ 2) with the solution vector w that represents the probability components of disjoint events. Moreover, we suggest an algorithm for the determination of the eigenvalue problem solution Aw=nw as well as the corresponding flowchart. The algorithm for arbitrary consistent matrix A can be simply programmed and used.


Author(s):  
Yifan Liao

In the concrete implementation of the fuzzy vault algorithm, the geometric hash method is a common technique for automatic calibration of biometric templates. For the fuzzy problem of parameter acquisition, the matching accuracy of fuzzy vault template is affected in the three parameters: the pixel size, hash table and hash table quantization parameters ([Formula: see text] and [Formula: see text]). The single factor experiment method obtains the optimal range of these three parameters, and the extraction range of the fuzzy point and the selection rule of the base point distance are improved for the fuzzy vault algorithm. Finally, based on the FVC fingerprint database, their matching precision is compared for the algorithm before and after optimization. The experimental results show that the false rejection rate (FRR) of the optimized algorithm is reduced by at least 9.84%, and the false acceptance rate (FAR) is reduced by at least 7.12%, indicating that the optimization scheme improves the matching accuracy of the algorithm. The algorithm has certain robustness and practicability.


2014 ◽  
Vol 4 (4(70)) ◽  
pp. 18
Author(s):  
Ігор Андрійович Могила ◽  
Ірина Іванівна Лобач ◽  
Оксана Андріївна Якимець

Author(s):  
N. P. Dmitrieva

One of the most characteristic features of cancer cells is their ability to metastasia. It is suggested that the modifications of the structure and properties of cancer cells surfaces play the main role in this process. The present work was aimed at finding out what ultrastructural features apear in tumor in vivo which removal of individual cancer cells from the cell population can provide. For this purpose the cellular interactions in the normal human thyroid and cancer tumor of this gland electron microscopic were studied. The tissues were fixed in osmium tetroxide and were embedded in Araldite-Epon.In normal human thyroid the most common type of intercellular contacts was represented by simple junction formed by the parallelalignment of adjacent cell membranees leaving in between an intermembranes space 15-20 nm filled with electronlucid material (Fig. 1a). Sometimes in the basal part of cells dilatations of the intercellular space 40-50 nm wide were found (Fig. 1a). Here the cell surfaces may form single short microvilli.


Author(s):  
T. Kaneyama ◽  
M. Naruse ◽  
Y. Ishida ◽  
M. Kersker

In the field of materials science, the importance of the ultrahigh resolution analytical electron microscope (UHRAEM) is increasing. A new UHRAEM which provides a resolution of better than 0.2 nm and allows analysis of a few nm areas has been developed. [Fig. 1 shows the external view] The followings are some characteristic features of the UHRAEM.Objective lens (OL)Two types of OL polepieces (URP for ±10' specimen tilt and ARP for ±30' tilt) have been developed. The optical constants shown in the table on the next page are figures calculated by the finite element method. However, Cs was experimentally confirmed by two methods (namely, Beam Tilt method and Krivanek method) as 0.45 ∼ 0.50 mm for URP and as 0.9 ∼ 1.0 mm for ARP, respectively. Fig. 2 shows an optical diffractogram obtained from a micrograph of amorphous carbon with URP under the Scherzer defocus condition. It demonstrates a resolution of 0.19 nm and a Cs smaller than 0.5 mm.


Author(s):  
Yeshayahu Talmon

To bring out details in the fractured surface of a frozen sample in the freeze fracture/freeze-etch technique,the sample or part of it is warmed to enhance water sublimation.One way to do this is to raise the temperature of the entire sample to about -100°C to -90°C. In this case sublimation rates can be calculated by using plots such as Fig.1 (Talmon and Thomas),or by simplified formulae such as that given by Menold and Liittge. To achieve higher rates of sublimation without heating the entire sample a radiative heater can be used (Echlin et al.). In the present paper a simplified method for the calculation of the rates of sublimation under a constant heat flux F [W/m2] at the surface of the sample from a heater placed directly above the sample is described.


Sign in / Sign up

Export Citation Format

Share Document