scholarly journals Fingerprint verification by the method of minutia decomposition

Currently, an attempt is being made to introduce biometric technologies in various spheres of public and state life: forensics, access control systems, applications on mobile devices, banking, etc. The problem of accuracy remains an open question for discussion, because when solving the problem of verification of biometric samples there are problems of addition or disappearance of reference points, deformation of distances between them, linear and angular displacements of the whole sample. Also, the developed biometric systems do not meet all the requirements of information security, namely the integrity, accessibility, authenticity, indisputability, observability and confidentiality. The article presents an analysis of the method of decomposition of minefields during fingerprint verification, describes its advantages and disadvantages in comparison with other methods. It is based on the creation of local structures for each minute of the imprint, because it is the local structures that are resistant to mixing, angular and linear displacement of points. Building global structures often does not lead to good accuracy, as there is a problem of centering the entire sample. A complete list of tests of samples of the database of fingerprints during their verification by this method. An algorithm for constructing a code for an arbitrary minution and an algorithm for comparing two sample templates are described. The results of the article show the value of pairwise comparisons of two templates for true and false tests. The indicators of false rejection rate (FRR), false access rate (FAR), single equivalent error rate (EER) were studied.

2021 ◽  
pp. 92-102
Author(s):  
Sergiy Rassomakhin ◽  
Olha Melkozerova ◽  
Oleksii Nariezhnii

The subject matter of the paper is the development of fingerprint local structures based on the new method of the minutia vicinity decomposition (MVD) for the solution to the task of fingerprint verification. It is an essential task because it is produced attempts to introduce biometric technology in different areas of social and state life: criminology, access control system, mobile device applications, banking. The goal is to develop real number vectors that can respond to criteria for biometric template protection schemes such as irreversibility with the corresponding accuracy of equal error rate (EER). The problem to be solved is the problem of accuracy in the case of verification because there are false minutiae, disappearing of truth minutiae and there are also linear and angular deformations. The method is the new method of MVD that used the level of graphs with many a point from 7 to 3. This scheme of decomposition is shown in this paper; such a variant of decomposition is never used in science articles. The following results were obtained: description of a new method for fingerprint verification. The new metric for creating vectors of real numbers were suggested – a minimal path for points in the graphs. Also, the algorithm for finding out minimal paths for points was proposed in the graphs because the classic algorithm has a problem in some cases with many points being 6. These problems are crossing and excluding arcs are in the path. The way of sorting out such problems was suggested and examples are given for several points are 20. Results of false rejection rate (FRR), false acceptance rate (FAR), EER are shown in the paper. In this paper, the level of EER is 33 % with full search. 78400 false and 1400 true tests were conducted. The method does not use such metrics as distances and angles, which are used in the classical method of MVD and will be used in future papers. This result is shown for total coincidences of real number, not a similarity that it is used at verifications. It is a good result in this case because the result from the method index-of-max is 40 %.


The article presents an example of verification of the fingerprint database by the method of solving the problem of a salesman using the decomposition of the neighborhood of the nearest minutes. The solution of this problem is resistant to linear, angular deformations, mixing of points. This method provides the correct solution for a small number of points, for a large number of points there is a cross section of the contours, the solution is not optimal. Therefore, to reduce the processing time and calculate the metric, a modified algorithm for solving the problem by the method of branches and boundaries, namely the alignment and exclusion of arcs on each cycle of the optimal route. Verification is based on the creation of local structures for each minute of the imprint, because it is the local structures that are resistant to deformation. Building global structures very often does not lead to good quality indicators, as there is a problem with the centering of the entire sample. A complete list of tests of fingerprint database templates during their verification by this method has been carried out. The use of decomposition of characteristic features provides greater stability when adding false and erasing true minutes. The results of the article show the values of pairwise comparisons of two templates for true and false tests. The indicators of false rejection rate (FRR), false access rate (FAR), single equivalent error rate (EER) were studied.


Author(s):  
Nikolay I. Kol'tsov

A simple effective method for solving the inverse problem of chemical kinetics based on non-stationary experiments for multistage reactions occurring in an isothermal reactor of ideal mixing is described. The idea of the method is based on taking into account the distinctive features (informativeness) of different fragments of relaxation curves for chemical reactions with arbitrary (non-monotonic) kinetics and their as accurate approximation as possible. For this purpose, non-linear (cubic) splines are used to describe different informative fragments of relaxation curves, which allow to approximate and interpolate experimental data as accurately as possible. An additional advantage of cubic splines, from the point of view of the implementation of the described method, is their continuity at all given points up to and including second-order derivatives (smoothness). This allows us to calculate with good accuracy not only the concentration of reagents, but also the instantaneous rate of change at any time. The consequence of this is the possibility of a sufficiently accurate solution of the inverse problem based on the data of non-stationary experiments. The correctness of the mathematical model used and the stability of the method were tested using variations of the original data. An example of using the method for determining the intervals of physical values of the rate constants of the stages of a two-stage reaction is given. The influence of the method of selecting the reference points (structure) of the spline and measurement errors (noise) of experimental data on the error of determining the speed constants of the stages is estimated. The efficiency of application and good accuracy of the method for solving the inverse problem of chemical kinetics of multistage reactions occurring in non-gradient systems with taking into account of noise is shown.


2021 ◽  
Vol 11 ◽  
Author(s):  
Henriette L. Möllmann ◽  
Laura Apeltrath ◽  
Nadia Karnatz ◽  
Max Wilkat ◽  
Erik Riedel ◽  
...  

ObjectivesThis retrospective study compared two mandibular reconstruction procedures—conventional reconstruction plates (CR) and patient-specific implants (PSI)—and evaluated their accuracy of reconstruction and clinical outcome.MethodsOverall, 94 patients had undergone mandibular reconstruction with CR (n = 48) and PSI (n = 46). Six detectable and replicable anatomical reference points, identified via computer tomography, were used for defining the mandibular dimensions. The accuracy of reconstruction was assessed using pre- and postoperative differences.ResultsIn the CR group, the largest difference was at the lateral point of the condyle mandibulae (D2) -1.56 mm (SD = 3.8). In the PSI group, the largest difference between preoperative and postoperative measurement was shown at the processus coronoid (D5) with +1.86 mm (SD = 6.0). Significant differences within the groups in pre- and postoperative measurements were identified at the gonion (D6) [t(56) = -2.217; p = .031 <.05]. In the CR group, the difference was 1.5 (SD = 3.9) and in the PSI group -1.04 (SD = 4.9). CR did not demonstrate a higher risk of plate fractures and post-operative complications compared to PSI.ConclusionFor reconstructing mandibular defects, CR and PSI are eligible. In each case, the advantages and disadvantages of these approaches must be assessed. The functional and esthetic outcome of mandibular reconstruction significantly improves with the experience of the surgeon in conducting microvascular grafts and familiarity with computer-assisted surgery. Interoperator variability can be reduced, and training of younger surgeons involved in planning can be reaching better outcomes in the future.


2019 ◽  
Vol 9 (5) ◽  
pp. 840 ◽  
Author(s):  
Redouane Khaoulaf ◽  
Puja Adhikari ◽  
Mohamed Harcharras ◽  
Khalid Brouzi ◽  
Hamid Ez-Zahraouy ◽  
...  

The electronic structure and mechanical and optical properties of five pyrophosphate crystals with very complex structures are studied by first principles density functional theory calculations. The results show the complex interplay of the minor differences in specific local structures and compositions can result in large differences in reactivity and interaction that are rare in other classes of inorganic crystals. These are discussed by dividing the pyrophosphate crystals into three structural units. H2P2O7 is the most important and dominating unit in pyrophosphates. The other two are the influential cationic group with metals and water molecules. The strongest P-O bond in P2O5 is the strongest bond for crystal cohesion, but O-H and N-H bonds also play an important part. Different type of bonding between O and H atoms such as O-H, hydrogen bonding, and bridging bonds are present. Metallic cations such as Mg, Zn, and Cu form octahedral bonding with O. The water molecule provides the unique H∙∙∙O bonds, and metallic elements can influence the structure and bonding to a certain extent. The two Cu-containing phosphates show the presence of narrow metallic bands near the valence band edge. All this complex bonding affects their physical properties, indicating that fundamental understanding remains an open question.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ujwalla Gawande ◽  
Mukesh Zaveri ◽  
Avichal Kapur

Recent times witnessed many advancements in the field of biometric and ultimodal biometric fields. This is typically observed in the area, of security, privacy, and forensics. Even for the best of unimodal biometric systems, it is often not possible to achieve a higher recognition rate. Multimodal biometric systems overcome various limitations of unimodal biometric systems, such as nonuniversality, lower false acceptance, and higher genuine acceptance rates. More reliable recognition performance is achievable as multiple pieces of evidence of the same identity are available. The work presented in this paper is focused on multimodal biometric system using fingerprint and iris. Distinct textual features of the iris and fingerprint are extracted using the Haar wavelet-based technique. A novel feature level fusion algorithm is developed to combine these unimodal features using the Mahalanobis distance technique. A support-vector-machine-based learning algorithm is used to train the system using the feature extracted. The performance of the proposed algorithms is validated and compared with other algorithms using the CASIA iris database and real fingerprint database. From the simulation results, it is evident that our algorithm has higher recognition rate and very less false rejection rate compared to existing approaches.


Author(s):  
Milan Stanojević, ◽  
Ivan Milenković ◽  
Dušan Starčević ◽  
Bogdana Stanojević

Multi-modal biometric verification systems use information from several biometric modalities to verify an identity of a person. The false acceptance rate (FAR)and false rejection rate (FRR) are metrics generally used to measure the performance of such systems.In this paper, we first approximate the score distributions of both genuine users and impostors by continuous distributions. Then we incorporate the exact expressions of the distributions in the formulas for the expected values of both FAR and FRR for each matcher. In order to determine the upper and lower acceptance thresholds in the sequential multi-modal biometric matching, we further minimize the expected values of FAR and FRR for the entire processing chain. We propose a non-linear bi-objective programming problem whose objective functions are the two error probabilities. We analyze the efficient set of the bi-objective problem, and derive an efficient solution as a best compromise between the error probabilities. Replacing the least squares approximation of the score distributions by a continuous distributionapproximation, this approach modifies the method presented in Stanojević et al. [15] (doi: 10.1109/ICCCC.2016.7496752) (a).The results of our experiments showed a good performance of the sequential multiple biometric matching system based on continuous distribution approximation and optimized thresholds.(a)Reprinted (partial) and extended, with permission based on License Number3938230385072 © [2016] IEEE, from "Computers Communications and Control (ICCCC), 2016 6th International Conference on".


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 15
Author(s):  
Takayuki Koike ◽  
Norimasa Yamada

A previous study reported that habitually barefoot Kenyan distance runners tend to use a mid-foot strike or a forefoot-heel strike (FHS). Current findings indicate FHS helps enhance Kenyans’ running performance. However, no study has investigated how FHS modulates leg stiffness (kleg) and altered running velocity with changes in kleg. Because vertical displacement of the centre of mass and kleg during hopping are applicable to the running process, this study investigated how FHS affects kleg and hopping frequency (fhopping) during hopping. Subjects hopped at 2.2 Hz with normal hopping (NH-2.2Hz) and at a comfortable frequency with FHS (FHS-CF). According to each subject’s comfortable frequency at FHS-CF, they were divided into higher (HG, 2.49 ± 0.11 Hz) and lower (LG, 2.16 ± 0.19 Hz) groups. With FHS-CF, the flight duration in HG was significantly shorter than that in LG. kleg in HG was greater than that in LG. Negative work in the first half of the stance phase and positive work in the second half of the stance phase at all three joints were smaller in HG than in LG. The touchdown angle was larger and angular displacements at the joints were smaller in HG than in LG. The findings indicate that when hoppers used FHS, they increased their preferred fhopping by stiffening their leg joints during the stance phase and jumping with a lower height than in normal hopping; additionally, it is important to increase the touchdown joint angle for a stiffened joint.


Author(s):  
Farzad Karami ◽  
Yonas Tadesse

Twisted and Coiled Polymers (TCP) muscles are actuators that generate force and linear displacement in response to thermal stimuli. Their length changes significantly by heating due to a high negative coefficient of thermal expansion (CTE). A mathematical model for predicting the behavior of TCP muscles is essential for exploiting maximum advantage from these actuators and also controlling them. In this work, a simple, practical, and accurate model for predicting the displacement of TCP muscles, as a function of input electrical actuation and load, is derived. The problem is broken down into two, i.e. modeling of the thermal and thermo-elastic part. For the first part, a differential equation with changing electrical resistance term is derived. In the next step, by using a temperature-dependent modulus of elasticity and CTE as well as taking the geometry of muscles into account, an expression for displacement as a function of temperature and load is proposed. Experimental actuation data of a TCP muscle is used for verifying the model and investigating its accuracy. The thermal part shows a good agreement between the simulation and experimental result. The displacement part also has a good accuracy for medium and high actuation currents but there is a mismatch in very high current magnitudes. The cause of the discrepancy is explained and recommendations are made for the best performance of TCP muscles.


2011 ◽  
Vol 101 (2) ◽  
pp. 470-492 ◽  
Author(s):  
Johannes Abeler ◽  
Armin Falk ◽  
Lorenz Goette ◽  
David Huffman

A key open question for theories of reference-dependent preferences is: what determines the reference point? One candidate is expectations: what people expect could affect how they feel about what actually occurs. In a real-effort experiment, we manipulate the rational expectations of subjects and check whether this manipulation influences their effort provision. We find that effort provision is significantly different between treatments in the way predicted by models of expectation-based, reference-dependent preferences: if expectations are high, subjects work longer and earn more money than if expectations are low. (JEL D12, D84, J22)


Sign in / Sign up

Export Citation Format

Share Document