scholarly journals Evaluation of the properties and structure of nanocrystalline surface layers in relation to selected constructional materials resistant to abrasive wear

2018 ◽  
Vol 90 (9) ◽  
Author(s):  
Jacek Górka ◽  
Artur Czuprynski ◽  
Marcin Adamiak ◽  
Adam Kopyść

The present paper is the result of the investigations of the properties and structure of nanocrystalline layers deposited from iron-based nanoalloy on steel S355N substrate by manual metal arc welding method (MMA) compared to selected abrasion-resistant construction materials currently used in industry. The resultant deposit welds were subjected to macro and microscopic metallographic examination. Working properties of obtained nanocrystalline deposits weld compared to currently used materials were evaluated based on the hardness, abrasive wear of metal-to-mineral. The results of deposits weld working properties measurements were compared with property of wear resistant steel HARDOX 400 type used as reference material.

2017 ◽  
Vol 62 (3) ◽  
pp. 1479-1484 ◽  
Author(s):  
J. Górka ◽  
A. Czupryński ◽  
M. Adamiak

AbstractThe present paper is the result of the investigations of the properties and structure of nanocrystalline layers deposited from iron-based nanoalloy on steel S355N substrate by manual metal arc welding method (MMA). In the process of welding a 100 A current intensity was used with desiccation preheating at 80°C while maintaining the interpass temperature at range of 200°C. The resultant deposit welds were subjected to macro and microscopic metallographic examination, X-ray phase analyses and crystallite size was analyzed by X-ray diffractometry (XRD), additionally EDX chemical composition analysis of precipitates during scanning electron microscopy was performed. Working properties of the obtained nanocrystalline deposit welds were evaluated based on hardness and metal-to-mineral abrasive wear. The results of the deposit welds working properties measurements were compared with the properties of wear resistant steel HARDOX 400 type used as the reference material.


2017 ◽  
Vol 62 (1) ◽  
pp. 327-333 ◽  
Author(s):  
J. Pikuła ◽  
M. Łomozik ◽  
T. Pfeifer

Abstract Welded installations failures of power plants, which are often result from a high degree of wear, requires suitable repairs. In the case of cracks formed in the weld bead of waterwall, weld bead is removed and new welded joint is prepared. However, it is associated with consecutive thermal cycles, which affect properties of heat affected zone of welded joint. This study presents the influence of multiple manual metal arc welding associated with repair activities of long operated waterwall of boiler steel on properties of repair welded joints. The work contains the results of macro and microscopic metallographic examination as well as the results of hardness measurements.


2011 ◽  
Vol 57 (Special Issue) ◽  
pp. S50-S56 ◽  
Author(s):  
P. Čičo ◽  
D. Kalincová ◽  
M. Kotus

This paper is focused on the analysis of the welding technology influence on the microstructure production and quality of the welded joint. Steel of class STN 41 1375 was selected for the experiment, the samples were welded by arc welding including two methods: a manual one by coated electrode and gas metal arc welding method. Macro and microstructural analyses of the experimental welded joints confirmed that the welding parameters affected the welded joint structure in terms of the grain size and character of the structural phase.


2010 ◽  
Vol 139-141 ◽  
pp. 352-355 ◽  
Author(s):  
Tian Hui Zhang ◽  
Hong Cai Fu ◽  
Pei Jun Yan ◽  
Fang Wei Jin ◽  
Qiong Wang

Weldability analysis, metallographic experiments and mechanical property experiments were carried out on weld joint between B610CF and 16MnR steel using shielded metal arc welding method and mixed active-gas arc welding method. Weldability analysis shows that the weld joint has some tendency to cold crack, and preheat is needed before welding. Metallographic results show that there are ferrite and bainite in weld metal, and in heat-affected zone of B610CF side there are ferrite and bainite, on which there is much dispersed slight Fe3C, and in heat-affected zone of 16MnR side there are ferrite, pearlite. There is no quenching microstructure resulting in crack in weld joint. From mechanical property results, it can be concluded that the weld joints have excellent impact toughness at low temperature and the tensile strength and plasticity of weld joints is matched to the ones of 16MnR steel. So the welding parameters in this paper are appropriate to get qualified weld joints.


2007 ◽  
Vol 353-358 ◽  
pp. 519-522 ◽  
Author(s):  
Hyung Ick Kim ◽  
Hong Sun Park ◽  
Jae Mean Koo ◽  
Sung Ho Yang ◽  
Moon Young Kim ◽  
...  

The advancement in superalloys permits the hot gas path components to operate for thousands of hours under severe centrifugal, thermal and vibratory stresses. The blade of a gas turbine must withstand the most severe condition combined of temperature, stress, and environment. After a long operation, the damaged blades of a gas turbine used are welded for build-up and repaired. We analyzed and compared the mechanical properties of GMAW(Gas Metal Arc Welding), a manual welding method, a laser cladding method, and an automatic welding method under research and development.


Sign in / Sign up

Export Citation Format

Share Document