Microstructures and Mechanical Properties of Weld Joint between B610CF and 16MnR Steel

2010 ◽  
Vol 139-141 ◽  
pp. 352-355 ◽  
Author(s):  
Tian Hui Zhang ◽  
Hong Cai Fu ◽  
Pei Jun Yan ◽  
Fang Wei Jin ◽  
Qiong Wang

Weldability analysis, metallographic experiments and mechanical property experiments were carried out on weld joint between B610CF and 16MnR steel using shielded metal arc welding method and mixed active-gas arc welding method. Weldability analysis shows that the weld joint has some tendency to cold crack, and preheat is needed before welding. Metallographic results show that there are ferrite and bainite in weld metal, and in heat-affected zone of B610CF side there are ferrite and bainite, on which there is much dispersed slight Fe3C, and in heat-affected zone of 16MnR side there are ferrite, pearlite. There is no quenching microstructure resulting in crack in weld joint. From mechanical property results, it can be concluded that the weld joints have excellent impact toughness at low temperature and the tensile strength and plasticity of weld joints is matched to the ones of 16MnR steel. So the welding parameters in this paper are appropriate to get qualified weld joints.

2013 ◽  
Vol 675 ◽  
pp. 270-274
Author(s):  
Yun Chun Chen ◽  
Wen Min Liu ◽  
Hou Sen Yang ◽  
Tian Hui Zhang ◽  
Pei Jun Yan

Weld parameter is an important factor affecting micrographic structure and mechanical properties of weld joints. It was investigated by metallographic experiments and mechanical property experiments for the influence of weld heat input on dissimilar steel weld joint of penstock using B610CF and 16MnR steel in water conservancy and hydropower engineering using shielded metal arc welding method and mixed active gas arc welding method. Metallographic experimental results show that in weld metal with the increase of weld heat input the quantity of bainite decreases and crystalline grain is larger when using the same welding method; but in both B610CF and 16MnR steel heat affected zone, there is no distinct difference in microstructure. Mechanical property experimental results show that in weld metal with the increase of weld heat input the impact toughness decreases when using the same welding method, but in both B610CF and 16MnR heat affected zone, there is less difference in impact toughness; and there is no distinct difference in tensile strength and plasticity of weld joint. So moderate weld heat input is recommended.


2011 ◽  
Vol 57 (Special Issue) ◽  
pp. S50-S56 ◽  
Author(s):  
P. Čičo ◽  
D. Kalincová ◽  
M. Kotus

This paper is focused on the analysis of the welding technology influence on the microstructure production and quality of the welded joint. Steel of class STN 41 1375 was selected for the experiment, the samples were welded by arc welding including two methods: a manual one by coated electrode and gas metal arc welding method. Macro and microstructural analyses of the experimental welded joints confirmed that the welding parameters affected the welded joint structure in terms of the grain size and character of the structural phase.


2012 ◽  
Vol 585 ◽  
pp. 440-444
Author(s):  
Rahul Chhibber ◽  
Yogesh Kumar Singla ◽  
Bijan Kumar Dutta

Bimetallic welds made between ferritic steels and austenitic stainless steels are conventionally fabricated using arc welding procedures such as Tungsten Inert Gas, Metal Inert Gas, Shielded Metal Arc Welding and Submerged Arc Welding. However friction welding provides a new and unique solid state approach for joining many similar and dissimilar materials, which may not be possible to join by other welding techniques available without adding any external filler metal. This approach is mostly used in joining of dissimilar materials. The reason for increased utility being the absence of any external filler material which may otherwise add to the heterogeneity of the weld structure. In this paper, the fabrication and effect of friction welding parameters on mechanical-micro structural changes of bimetallic weld joints has been discussed. An attempt has also been made to relate the effect of friction welding parameters on the peak temperature values taken near faying surface and micro hardness changes measured in various zones of weld.


Author(s):  
Yurianto ◽  
Gunawan Dwi Haryadi ◽  
Sri Nugroho ◽  
Sulardjaka ◽  
Susilo Adi Widayanto

The heating and cooling at the end of the welding process can cause residual stresses that are permanent and remain in the welded joint. This study aims to evaluate the magnitude and direction of residual stresses on the base metal and heat-affected zone of rail joints welded by the manual shielded metal arc and thermite welding. This research supports the feasibility of welding for rail. The material used in this study is the R-54 rail type, and the procedure used two rail samples of one meter long each, welded using manual shielded metal arc welding and thermite welding. The base metal and heat-affected zone of the welded joints were scanned with neutron ray diffraction. The scan produces a spectrum pattern and reveals the direction of the residual stress along with it. We found the strain value contained in both types of welded joints by looking at the microstrain values, which we obtained using the Bragg equation. The results show that the magnitude and direction of the residual stress produced by manual shielded metal arc welding and thermite welding are not the same. Thermite welding produces lower residual stress (lower crack susceptibility) than manual shielded metal arc welding. The melt's freezing starts from the edge to the center of the weld to create random residual stresses. The residual stress results of both the manual shielded metal arc welding and thermite welding are still below the yield strength of the base metal.


Author(s):  
K. Satyambabu ◽  
N. Ramachandran

Many important engineering applications such as nuclear reactors, ships, pipes and pressure vessels are shell-like structures made with weldments. For such a structure, a major problem is the development of residual stress and distortion due to welding. Residual stresses in weldments significantly affect stress corrosion cracking, hydrogen-induced cracking and fatigue strength in welded structures. As-welded components generally have certain amount of residual stresses caused by the application of intense heat or thermal loading at the weld joint, formed due to non-uniform cooling rates at different points in the weld metal and heat affected zones. Presence of residual stresses in a component is detrimental as they may lead to failure below the design stress value and also affect many important properties including the life of a welded component. Welding induced residual stresses can significantly increase the fracture driving force in a weldment and also contribute to brittle fracture. The thermal cycle imposed on any welded object causes thermal expansions and contractions which are not uniform. Quantitative measurement of residual stresses is essential to take remedial measures such as change in the welding technique, optimizing welding parameters (heat input, electrode diameter etc,), change in the weld groove design and post-weld heat treatment for minimizing the residual stresses. Residual stress measurements after post-weld treatment would also ensure the adequacy of stress relief treatment. To have an investigation into these aspects, residual stresses due to Manual Metal Arc Welding and Submerged Arc Welding were measured nondestructively with Ultrasonic technique. Residual stress distribution for Shielded Metal Arc Welding and Submerged Arc Welding were compared and the present studies emphasized, that Shielded Metal Arc Welding gave higher compressive stresses than Submerged Arc Welding. Further, to substantiate the studies, commercial finite element analysis software ANSYS 5.6 was used for modeling of manual metal arc welded joint. The results obtained by ANSYS were compared with those by Ultrasonic method.


2017 ◽  
Vol 740 ◽  
pp. 155-160 ◽  
Author(s):  
Z.A. Zakaria ◽  
K.N.M. Hasan ◽  
M.F.A. Razak ◽  
Amirrudin Yaacob ◽  
A.R. Othman

In this study, the effects of various welding parameters on welding strength in low carbon steel JIS G 3101 SS400, welded by gas metal arc welding were investigated. Welding current, arc voltage and travel speed are the variable parameters were studied in this study. The ultimate tensile strength, hardness and heat affected zone were measured for each specimen after the welding operations, and the effects of these parameters on strength were examined. Then, the relationship between welding parameter and ultimate tensile strength, hardness and heat affected zone were determined. Based on the finding, the best parameter is formulated and used to calculate the heat input.


Sign in / Sign up

Export Citation Format

Share Document