Analytical and Numerical Model of a Cold Rolling Process

Author(s):  
João Batista de Aguiar
Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 187
Author(s):  
Bo Zhang ◽  
Li Meng ◽  
Guang Ma ◽  
Ning Zhang ◽  
Guobao Li ◽  
...  

Twinning behaviors in grains during cold rolling have been systematically studied in preparing ultra-thin grain-oriented silicon steel (UTGO) using a commercial glassless grain-oriented silicon steel as raw material. It is found that the twinning system with the maximum Schmid factor and shear mechanical work would be activated. The area fraction of twins increased with the cold rolling reduction. The orientations of twins mainly appeared to be α-fiber (<110>//RD), most of which were {001}<110> orientation. Analysis via combining deformation orientation simulation and twinning orientation calculation suggested that {001}<110> oriented twinning occurred at 40–50% rolling reduction. The simulation also confirmed more {100} <011> oriented twins would be produced in the cold rolling process and their orientation also showed less deviation from ideal {001}<110> orientation when a raw material with a higher content of exact Goss oriented grains was used.


2011 ◽  
Vol 189-193 ◽  
pp. 2670-2674
Author(s):  
Zhi Jie Jiao ◽  
Chun Yu He ◽  
Jian Ping Li ◽  
Xiang Hua Liu

Pilot cold rolling mill is the important tool for the cold rolling process researching and new steel grade development. According to the design of the new type direct pulling pilot cold rolling mill, based on the mass flow constant principle, strip exit thickness indirect measurement method is studied. During rolling, strip entry and exit speed can be calculated accurately according to the measured value of two sides’ clamps movement. Data filtering treatment is adopted and program flow chart is designed. Based on the material entry thickness measured manually, exit thickness of all passes can be measured indirectly. This thickness indirect measurement method has been applied successfully on the new type pilot cold rolling mill, and the measurement results show that this method has a good accuracy.


2009 ◽  
Vol 36 (7) ◽  
pp. 548-554 ◽  
Author(s):  
Y. Z. Zhu ◽  
J. Rao ◽  
Z. Zhu ◽  
Z. D. Xiang ◽  
Z. F. Wu
Keyword(s):  

Author(s):  
Hakan Ozaltun ◽  
Samuel J. Miller

This article aims to provide possible mechanical causes for the lowered blister temperatures of RERTR-12 and AFIP-4 fuel plates. Recent experimental investigations to determine the blister threshold temperatures have indicated lower thresholds for similar plates with comparable burn-up histories. Measured blister temperatures of roughly 100 °C lower compared to the previously tested plates may not be satisfactory for some plates. The primary differences between recent experiments and previous tests are: (1) An aggressive cold work process involving large thickness reduction ratios without normalization or full annealing (2) Subjecting the plates to a thermal cycling process prior to irradiation, and finally (3) A primarily frontal neutron flux as opposed to a transverse flux profile. It is believed that the stress field has implications to blister behavior. To investigate this claim, the stress-strain states for the fabrication procedure were evaluated. First, the residual stress profile caused by the cold rolling process was calculated. Modeling of the cold rolling process has shown confirmation of residual stresses of considerable magnitude and the existence of stress gradients with respect to foil thickness prior to the HIP process. Once calculated, these stress profiles were used as an initial condition for the fabrication process. Due to the variation in stress fields depending on location at which a foil is cut from the cold rolled plate, three representative regions were selected and implemented in the HIP simulation. Variation in stresses, depending on location of the cold rolled plate as well and variation in the through-thickness, results in a wide range of mechanical stress states. This suggests that inhomogeneous irradiation and thermal cycling behavior will result from the use of cold rolled foils. Additionally, these results suggest that there will be fundamental differences in fuel plate behavior observed between plates fabricated with cold rolled foils versus hot rolled and fully annealed foils.


2014 ◽  
Vol 875-877 ◽  
pp. 63-67 ◽  
Author(s):  
Dinh van Hai ◽  
Nguyen Trong Giang

In this work, ECAP technique was combined with cold rolling process in order to enhance mechanical properties and microstructure of pure Titanium. Coarse grain (CG) Titanium with original grain size of 150 μm had been pressed by ECAP at 425oC by 4, 8 and 12 passes, respectively. This process then was followed by rolling at room temperature with 35%, 55%, and 75% rolling strains. After two steps, mechanical properties such as strength, hardness and microstructure of processed Titanium have been measured. The result indicated significant effect of cold rolling on tensile strength, hardness and microstructure of ECAP-Titanium.


Sign in / Sign up

Export Citation Format

Share Document