scholarly journals OVERCOMING SEED DORMANCY OF Robinia pseudoacacia L. AND Ceratonia siliqua L. SPECIES USING DIFFERENT PRETREATMENTS IN MALTA FOREST NURSERY – DUHOK

2018 ◽  
Vol 21 (1) ◽  
pp. 1-7
Author(s):  
KHALEDA HAJI ABDULLAH ◽  
2017 ◽  
Vol 27 (3) ◽  
pp. 243-250 ◽  
Author(s):  
Xavier P. Bouteiller ◽  
Annabel J. Porté ◽  
Stéphanie Mariette ◽  
Arnaud Monty

AbstractPhysical dormancy of Robinia pseudoacacia seeds makes it a challenge for scientists and forest managers to obtain a homogeneous germination for larger seed samples. Water imbibition of the seeds can be achieved through manual piercing of the seed coat, but this method remains time consuming and heterogeneous. We tested several ecologically friendly methods to break seed dormancy, including manual pin puncture, water soaking, oven dry-heating (two temperatures) and sanding. Sanding was performed using an automatic grinder to control shaking duration (three durations) and get a homogeneous scraping of the coat. All methods, except dry-heating, resulted in successful dormancy breaking; water soaking was the least efficient method, attaining 57% germination. Sanding proved to be as efficient as puncturing (97%) but long duration sanding (10 or 15 min) could damage cotyledons, which would impede further development of the plant. Short-time sanding (5 min) proved to be the best method to reach high total germination and healthy (undamaged cotyledon) seedlings, and was successfully applied to 500 seeds. The reference puncture method and the automatic sanding were also tested on seeds of nine Fabaceae species and proved to be efficient for some species. Automated sanding can thus be used as a standard to break physical dormancy of black locust or other Fabaceae seeds to allow further comparative studies of plant populations or genotypes.


2021 ◽  
Vol 43 (11) ◽  
Author(s):  
Valeria Cavallaro ◽  
Carmelo Maucieri ◽  
Cristina Patanè ◽  
Giancarlo Fascella ◽  
Alessandra Pellegrino ◽  
...  

AbstractCarob (Ceratonia siliqua L.) is a relevant element of the Mediterranean spontaneous vegetation. Moreover, it is useful in reforestation, and it is currently re-valued for sustainable agriculture in dryland areas. However, the difficulties tied to carob propagation (mainly seed dormancy) hamper its large-scale cultivation. In this paper, the effects of four seed treatments (no treatment [control], soaking at 70 °C and 90 °C in water, or in 96% sulphuric acid) on five carob genotypes germination were studied. As compared to the very low germination of untreated seeds (0–13% germination), sulphuric acid (93–100% germination) and 90 °C water soaking (from 72 to > 90% germination in four out the five genotypes) were effective in promoting germination. Soaking at 90 °C resulted in the leaching of a higher amount of total polyphenols from the genotypes seed coat as compared to soaking at 70 °C. A significant correlation (0.75**) was ascertained between polyphenol leaching of the different genotypes and germination. These results suggest that dormancy in this species is not primarily associated with seed coat hardness, as it is generally thought, but also with the release of polyphenols. Polyphenols determination of the dormant and the few non-dormant seeds of the different genotypes also seem to confirm this hypothesis since these last showed an almost halved total polyphenols content (on average 17.0) as compared to dormant ones (34.8 mg g−1 of seed FW). Further studies may determine the polyphenols involved, but also assess new, easier to carry out, seed treatments. The important role of the galactomannans on seed germination of carob is also discussed. Finally, similar studies may enhance the knowledge of dormancy processes in other Fabaceae species whose germination is positively affected by hot water treatments.


Pneumologie ◽  
2004 ◽  
Vol 58 (11) ◽  
Author(s):  
S Kespohl ◽  
R Merget ◽  
M Gellert ◽  
T Brüning ◽  
M Raulf-Heimsoth

Author(s):  
V.V. Tanyukevich ◽  
◽  
S.V. Tyurin ◽  
D.V. Khmeleva ◽  
A.A. Kvasha ◽  
...  

Works on protective afforestation are carried out in order to protect agricultural land from degradation processes, as well as to improve the microclimate of land. The research purpose is to study the bioproductivity and environmental role of Robinia pseudoacacia L. forest shelterbelts in the conditions of the Kuban lowland. The approved and generally accepted methods of forest valuation, forest land reclamation, botany, and mathematical statistics were applied. Plantings were created according to the standard technology for the steppe zone of the Russian Federation. The area of forest shelterbelts is 62.4 ths ha, including 5 % of the young growth (I state class), 80 % of middle-aged forest plantings (II state class), 10 % of maturing plantings (II state class), 5 % of mature and overmature plantings (III state class). Living ground cover is formed by the following species: Koeleria pyramidata L., Poa pratensis L., Festuca pratensis H., Elytrígia repens L., Dactylis glomerata L., and Phlum pratense L. Aboveground phytomass is 100–300 g/m2; height is 25–32 cm. Plantings are characterized by the quality classes: young growth – I and II; middle-aged and maturing – III; mature and overmature – IV. At the age of natural maturity (70 years), the Robinia trunk reaches the average height of 15.1 m with the average diameter of 22.1 cm. The total stock of wood reaches 18, (ths m3), including (ths m3): young growth – 68 (ths m3); middleaged plantings – 14,871 (ths m3); maturing plantings – 2,187 (ths m3); mature and overmature plantings – 1,314 (ths m3). Aboveground phytomass in young growth is 20.2 t/ha; in mature and overmature plantings it is 391.2 t/ha. In the region it is estimated at 17,070 ths t, including (ths t): young growth – 64; middle-aged plantings – 13,753; maturing plantings – 2,032; mature and overmature plantings – 1,221. The share of stem mass reaches 84.5–80.8 %; woody greenery – 4.2–1.5 %; branches – 11.3–17.7 %. Recalculation coefficients of the stock into aboveground phytomass are the following for: young growth – 0.936; mature and overmature forest shelterbelts – 0.929. Phytosaturation of forest shelterbelts varies within 0.314–2.474 kg/m3. Forest shelterbelts have accumulated 8,534 ths t of carbon, which is estimated at 145.1 mln dollars. The sphere of application of the research results is the Krasnodar Krai forestry, which is recommended to create an additional 60 ths ha of forest shelterbelts, which will provide a normative protective forest cover of arable land of 5 % and annual carbon sequestration up to 3.4 t/ha.


2019 ◽  
Vol 38 (4) ◽  
pp. 1243-1254 ◽  
Author(s):  
Abdellatif Essahibi ◽  
Laila Benhiba ◽  
Mohamed Oussouf Fouad ◽  
Mohamed Ait Babram ◽  
Cherki Ghoulam ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 357
Author(s):  
Zhaohui Jia ◽  
Miaojing Meng ◽  
Chong Li ◽  
Bo Zhang ◽  
Lu Zhai ◽  
...  

Anthropogenic overexploitation poses significant threats to the ecosystems that surround mining sites, which also have tremendous negative impacts on human health and society safety. The technological capacity of the ecological restoration of mine sites is imminent, however, it remains a challenge to sustain the green restorative effects of ecological reconstruction. As a promising and environmentally friendly method, the use of microbial technologies to improve existing ecological restoration strategies have shown to be effective. Nonetheless, research into the mechanisms and influences of rock-solubilizing microbial inoculums on plant growth is negligible and the lack of this knowledge inhibits the broader application of this technology. We compared the effects of rock-solubilizing microbial inoculums on two plant species. The results revealed that rock-solubilizing microbial inoculums significantly increased the number of nodules and the total nodule volume of Robinia pseudoacacia L. but not of Lespedeza bicolor Turcz. The reason of the opposite reactions is possibly because the growth of R. pseudoacacia was significantly correlated with nodule formation, whereas L. bicolor’s growth index was more closely related to soil characteristics and if soil nitrogen content was sufficient to support its growth. Further, we found that soil sucrase activity contributed the most to the height of R. pseudoacacia, and the total volume of root nodules contributed most to its ground diameter and leaf area. Differently, we found a high contribution of total soil carbon to seedling height and ground diameter of L. bicolor, and the soil phosphatase activity contributed the most to the L. bicolor’ s leaf area. Our work suggests that the addition of rock-solubilizing microbial inoculums can enhance the supply capacity of soil nutrients and the ability of plants to take up nutrients for the promotion of plant growth. Altogether, our study provides technical support for the practical application of rock-solubilizing microbes on bare rock in the future.


Sign in / Sign up

Export Citation Format

Share Document