scholarly journals The Use of the λ Bacteriophage to Neutralize the Pathogenic Effects of Shiga Toxins from Escherichia Coli to Combat Antimicrobial Resistance: A Research Protocol

2021 ◽  
Vol 5 (11) ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 272 ◽  
Author(s):  
Emmanuel W. Bumunang ◽  
Tim A. McAllister ◽  
Rahat Zaheer ◽  
Rodrigo Ortega Polo ◽  
Kim Stanford ◽  
...  

Escherichia coli are commensal bacteria in the gastrointestinal tract of mammals, but some strains have acquired Shiga-toxins and can cause enterohemorrhagic diarrhoea and kidney failure in humans. Shiga-toxigenic E. coli (STEC) strains such as E. coli O157:H7 and some non-O157 strains also contain other virulence traits, some of which contribute to their ability to form biofilms. This study characterized non-O157 E. coli from South African cattle faecal samples for their virulence potential, antimicrobial resistance (AMR), biofilm-forming ability, and genetic relatedness using culture-based methods, pulsed-field gel electrophoresis (PFGE), and whole genome sequencing (WGS). Of 80 isolates screened, 77.5% (62/80) possessed Shiga-toxins genes. Of 18 antimicrobials tested, phenotypic resistance was detected against seven antimicrobials. Resistance ranged from 1.3% (1/80) for ampicillin-sulbactam to 20% (16/80) for tetracycline. Antimicrobial resistance genes were infrequently detected except for tetA, which was found in 31.3% (25/80) and tetB detected in 11.3% (9/80) of isolates. Eight biofilm-forming associated genes were detected in STEC isolates (n = 62) and two non-STEC strains. Prevalence of biofilm genes ranged from 31.3% (20/64) for ehaAβ passenger to 100% for curli structural subunit (csgA) and curli regulators (csgA and crl). Of the 64 STEC and multi-drug resistant isolates, 70.3% (45/64) and 37.5% (24/64) formed strong biofilms on polystyrene at 22 and 37 °C, respectively. Of 59 isolates screened by PFGE, 37 showed unique patterns and the remaining isolates were grouped into five clusters with a ≥90% relatedness. In silico serotyping following WGS on a subset of 24 non-O157 STEC isolates predicted 20 serotypes comprising three novel serotypes, indicating their diversity as potential pathogens. These findings show that North West South African cattle harbour genetically diverse, virulent, antimicrobial-resistant and biofilm-forming non-O157 E. coli. Biofilm-forming ability may increase the likelihood of persistence of these pathogens in the environment and facilitate their dissemination, increasing the risk of cross contamination or establishment of infections in hosts.


2012 ◽  
Vol 49 (No. 9) ◽  
pp. 317-326 ◽  
Author(s):  
J. Osek

A total of 90 Escherichia coli O157 isolates recovered from humans, cattle, and pigs, were examined for the presence of the H7 antigen, ability to produce Shiga toxins and enterohemolysin as well as for antimicrobial resistance and biochemical properties. Fourteen of the human strains (n = 23) and 21 of the bovine isolates (n&nbsp;=&nbsp;29) were of the O157:H7 serotype as determined by agglutination and PCR methods. All E. coli O157 of porcine origin (n&nbsp;=&nbsp;38) were H-negative. Based on the ability to produce Shiga toxins (Stxs), all human and cattle isolates and 11&nbsp;strains recovered from swine were identified as Shiga toxin-producing E. coli (STEC). Among STEC, most human strains (18 isolates) were Stx1- and Stx2-positive whereas cattle strains were mostly Stx2-positive. Eleven porcine STEC produced either Stx1 (7 isolates) or Stx2 (4 strains) toxins; an additional 20 isolates recovered from these animals had the Stx2e toxin gene as previously determined by PCR. All human and cattle E. coli O157 produced enterohemolysin whereas only 4 strains recovered from pigs were ehly-positive. Moreover, the PCR identification of the lpf<sub>O113</sub> gene performed earlier revealed that this putative virulence marker was present in all porcine isolates, only in 5 strains of bovine origin but in none of E. coli O157 recovered from humans. All 90 E. coli O157 strains tested displayed 10&nbsp;biochemical profiles that were different at least in one of the reaction tested. The most common atypical reaction observed among porcine O157 isolates was ability to ferment sorbitol (all strains) and production of &beta;-glucuronidase (25 isolates). Moreover, none of the sorbitol-positive strains was able to produce indol. Four antimicrobial resistance profiles among 90 E. coli O157 strains tested were observed. Most of the isolates recovered from humans and all strains from cattle were resistant only to rifampicin whereas the porcine strains showed resistance to either 3 antimicrobials (4 isolates) or to 4 drugs tested (34 isolates). The phenotypic data shown in the present study, together with the previously published genotypic analyses of these strains, confirm earlier suggestions that the porcine E. coli O157 strains are mostly different from those of bovine and human O157 isolates and could therefore play less important role in human STEC O157 infections.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1005
Author(s):  
Laura Montoro-Dasi ◽  
Arantxa Villagra ◽  
Sandra Sevilla-Navarro ◽  
Maria Teresa Pérez-Gracia ◽  
Santiago Vega ◽  
...  

New measures applied to reduce antimicrobial resistances (AMR) at field level in broiler production are focused on improving animals’ welfare and resilience. However, it is necessary to have better knowledge of AMR epidemiology. Thus, the aim of this study was to evaluate AMR and multidrug resistance (MDR) dynamics during the rearing of broilers under commercial (33 kg/m2 density and max. 20 ppm ammonia) and improved (17 kg/m2 density and max. 10 ppm ammonia) farm conditions. Day-old chicks were housed in two poultry houses (commercial vs. improved), and no antimicrobial agents were administered at any point. Animals were sampled at arrival day, mid-period and at slaughter day. High AMR rates were observed throughout rearing. No statistical differences were observed between groups. Moreover, both groups presented high MDR at slaughter day. These results could be explained by vertical or horizontal resistance acquisition. In conclusion, AMR and MDR are present throughout rearing. Moreover, although a lower level of MDR was observed at mid-period in animals reared under less intensive conditions, no differences were found at the end. In order to reduce the presence of AMR bacteria in poultry, further studies are needed to better understand AMR acquisition and prevalence in differing broiler growing conditions.


2021 ◽  
Vol 340 ◽  
pp. 109054
Author(s):  
Hamid Reza Sodagari ◽  
Penghao Wang ◽  
Ian Robertson ◽  
Sam Abraham ◽  
Shafi Sahibzada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document