scholarly journals A Consistent Geological-Seismological Model For Earthquake Occurrence in New Zealand

2021 ◽  
Author(s):  
◽  
Christian Stock

<p>For the development of earthquake occurrence models, historical earthquake catalogues and compilations of mapped, active faults are often used. The goal of this study is to develop new methodologies for the generation of an earthquake occurrence model for New Zealand that is consistent with both data sets. For the construction of a seismological earthquake occurrence model based on the historical earthquake record, 'adaptive kernel estimation' has been used in this study. Based on this method a technique has been introduced to filter temporal sequences (e.g. aftershocks). Finally, a test has been developed for comparing different earthquake occurrence models. It has been found that the adaptive kernel estimation with temporal sequence filtering gives the best joint fit between the earthquake catalogue and the earthquake occurrence model, and between two earthquake occurrence models obtained from data from two independent time intervals. For the development of a geological earthquake occurrence model based on fault information, earthquake source relationships (i.e. rupture length versus rupture width scaling) have been revised. It has been found that large dip-slip and strike-slip earthquakes scale differently. Using these source relationships a dynamic stochastic fault model has been introduced. Whereas earthquake hazard studies often do not allow individual fault segments to produce compound ruptures, this model allows the linking of fault segments by chance. The moment release of simulated fault ruptures has been compared with the theoretical deformation along the plate boundary. When comparing the seismological and the geological earthquake occurrence model, it has been found that a 'good' occurrence model for large dip-slip earthquakes is given by the seismological occurrence model using the Gutenberg-Richter magnitude frequency distribution. In contrast, regions dominated by long strike-slip faults produce large earthquakes but not many small earthquakes and the occurrence of earthquakes on such faults should be inferred from the dynamic fault model.</p>

2021 ◽  
Author(s):  
◽  
Christian Stock

<p>For the development of earthquake occurrence models, historical earthquake catalogues and compilations of mapped, active faults are often used. The goal of this study is to develop new methodologies for the generation of an earthquake occurrence model for New Zealand that is consistent with both data sets. For the construction of a seismological earthquake occurrence model based on the historical earthquake record, 'adaptive kernel estimation' has been used in this study. Based on this method a technique has been introduced to filter temporal sequences (e.g. aftershocks). Finally, a test has been developed for comparing different earthquake occurrence models. It has been found that the adaptive kernel estimation with temporal sequence filtering gives the best joint fit between the earthquake catalogue and the earthquake occurrence model, and between two earthquake occurrence models obtained from data from two independent time intervals. For the development of a geological earthquake occurrence model based on fault information, earthquake source relationships (i.e. rupture length versus rupture width scaling) have been revised. It has been found that large dip-slip and strike-slip earthquakes scale differently. Using these source relationships a dynamic stochastic fault model has been introduced. Whereas earthquake hazard studies often do not allow individual fault segments to produce compound ruptures, this model allows the linking of fault segments by chance. The moment release of simulated fault ruptures has been compared with the theoretical deformation along the plate boundary. When comparing the seismological and the geological earthquake occurrence model, it has been found that a 'good' occurrence model for large dip-slip earthquakes is given by the seismological occurrence model using the Gutenberg-Richter magnitude frequency distribution. In contrast, regions dominated by long strike-slip faults produce large earthquakes but not many small earthquakes and the occurrence of earthquakes on such faults should be inferred from the dynamic fault model.</p>


2021 ◽  
Author(s):  
Alison Duvall ◽  
Phaedra Upton ◽  
Camille Collett ◽  
Sarah Harbert ◽  
Seth Williams ◽  
...  

&lt;p&gt;The landscape at the NE end of the South Island, New Zealand, records oblique plate collision over the last 25 million years. Using low-temperature thermochronology, geomorphic analyses, and cosmogenic &lt;sup&gt;10&lt;/sup&gt;Be data, we document the landscape response to tectonics over long (10&lt;sup&gt;6&lt;/sup&gt;) and short (10&lt;sup&gt;2&lt;/sup&gt; &amp;#8211; 10&lt;sup&gt;3&lt;/sup&gt;) timescales in the Marlborough Fault System (MFS) and related Kaik&amp;#333;ura Mountains. Our results indicate two broad stages of landscape evolution that reflect a changing plate boundary through time. In the eastern MFS, Miocene folding above blind thrust faults generated prominent Kaik&amp;#333;ura Mountain peaks and formed major transverse rivers early in the plate collision history. By the Pliocene, rotation of the plate boundary led to a transition to dextral strike-slip faulting and widespread uplift that led to cycles of river channel offset, deflection and capture of tributaries draining across active faults, and headward erosion and captures by major transverse rivers within the western MFS. Despite clear evidence of recent rearrangement of the western MFS drainage network, rivers in this region still flow parallel to older faults, rather than along orthogonal traces of younger, active strike-slip faults. Such drainage patterns emphasize the importance of river entrenchment, showing that once rivers establish themselves along a structural grain, their capture or avulsion becomes difficult, even when exposed to new weakening and tectonic strain.&amp;#160;Over short timescales (hundreds to thousands of years), apparent catchment-wide average erosion rates derived from &lt;sup&gt;10&lt;/sup&gt;Be data show an increase from SW to NE, along strike of the Seaward Kaik&amp;#333;ura Range. These rates mirror spatial increases in elevation, slope, channel steepness, and coseismic landslides, demonstrating that both landscape and geochronology patterns are consistent with an increase in rock uplift rate toward a subduction front that is presently locked on its southern end. Remarkably, the form of the topography, hillslopes, and rivers across much of the MFS appears to faithfully record the complex and changing tectonic history of a long-lived, oblique convergent plate boundary.&lt;/p&gt;


2011 ◽  
Vol 44 (3) ◽  
pp. 283-291 ◽  
Author(s):  
D.J.A. Barrell ◽  
N.J. Litchfield ◽  
D.B. Townsend ◽  
M. Quigley ◽  
R.J. Van Dissen ◽  
...  

2021 ◽  
Author(s):  
Duna Roda-Boluda ◽  
Taylor Schildgen ◽  
Hella Wittmann-Oelze ◽  
Stefanie Tofelde ◽  
Aaron Bufe ◽  
...  

&lt;p&gt;The Southern Alps of New Zealand are the expression of the oblique convergence between the Pacific and Australian plates, which move at a relative velocity of nearly 40 mm/yr. This convergence is accommodated by the range-bounding Alpine Fault, with a strike-slip component of ~30-40 mm/yr, and a shortening component normal to the fault of ~8-10 mm/yr. While strike-slip rates seem to be fairly constant along the Alpine Fault, throw rates appear to vary considerably, and whether the locus of maximum exhumation is located near the fault, at the main drainage divide, or part-way between, is still debated. These uncertainties stem from very limited data characterizing vertical deformation rates along and across the Southern Alps. Thermochronology has constrained the Southern Alps exhumation history since the Miocene, but Quaternary exhumation is hard to resolve precisely due to the very high exhumation rates. Likewise, GPS surveys estimate a vertical uplift of ~5 mm/yr, but integrate only over ~10 yr timescales and are restricted to one transect across the range.&lt;/p&gt;&lt;p&gt;To obtain insights into the Quaternary distribution and rates of exhumation of the western Southern Alps, we use new &lt;sup&gt;10&lt;/sup&gt;Be catchment-averaged erosion rates from 20 catchments along the western side of the range. Catchment-averaged erosion rates span an order of magnitude, between ~0.8 and &gt;10 mm/yr, but we find that erosion rates of &gt;10 mm/yr, a value often quoted in the literature as representative for the entire range, are very localized. Moreover, erosion rates decrease sharply north of the intersection with the Marlborough Fault System, suggesting substantial slip partitioning. These &lt;sup&gt;10&lt;/sup&gt;Be catchment-averaged erosion rates integrate, on average, over the last ~300 yrs. Considering that the last earthquake on the Alpine Fault was in 1717, these rates are representative of inter-seismic erosion. Lake sedimentation rates and coseismic landslide modelling suggest that long-term (~10&lt;sup&gt;3&lt;/sup&gt; yrs) erosion rates over a full seismic cycle could be ~40% greater than our inter-seismic erosion rates. If we assume steady state topography, such a scaling of our &lt;sup&gt;10&lt;/sup&gt;Be erosion rate estimates can be used to estimate rock uplift rates in the Southern Alps. Finally, we find that erosion, and hence potentially exhumation, does not seem to be localized at a particular distance from the fault, as some tectonic and provenance studies have suggested. Instead, we find that superimposed on the primary tectonic control, there is an elevation/temperature control on erosion rates, which is probably transient and related to frost-cracking and glacial retreat.&lt;/p&gt;&lt;p&gt;Our results highlight the potential for &lt;sup&gt;10&lt;/sup&gt;Be catchment-averaged erosion rates to provide insights into the magnitude and distribution of tectonic deformation rates, and the limitations that arise from transient erosion controls related to the seismic cycle and climate-modulated surface processes.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Author(s):  
Xiaohui He ◽  
Hao Liang ◽  
Peizhen Zhang ◽  
Yue Wang

Abstract The South China block has been one of the most seismically quiescent regions in China, and the geometries and activities of the Quaternary faults have remained less studied due to the limited outcrops. Thus, source parameters of small-to-moderate earthquakes are important to help reveal the location, geometry distribution, and mechanical properties of the subsurface faults and thus improve the seismic risk assessment. On 12 October 2019, two earthquakes (the Ms 4.2 foreshock and the Ms 5.2 mainshock) occurred within 2 s and are located in southern South China block, near the junction region of the large-scale northeast-trending fault zones and the less continuous northwest-trending fault zones. We determined the point-source parameters of the two events via P-wave polarity analysis and regional waveform modeling, and the resolved focal mechanisms are significantly different with the minimum 3D rotation angle of 52°. We then resolved the rupture directivity of the two events by analyzing the azimuth variation of the source time duration and found the Ms 4.2 foreshock ruptured toward north-northwest for ∼1.0 km, and the Ms 5.2 mainshock ruptured toward east-southeast (ESE) for ∼1.5 km, implying conjugate strike-slip faulting. The conjugate causative faults have not been mapped on the regional geological map, and we infer that the two faults may be associated with the northwest-trending Bama-Bobai fault zone (the Shiwo section). These active faults are optimally oriented in the present-day stress field (northwest-southeast) and thus may now be potentially accumulating elastic strain to be released in a future large earthquake.


2020 ◽  
Vol 224 (1) ◽  
pp. 416-434
Author(s):  
Dezheng Zhao ◽  
Chunyan Qu ◽  
Xinjian Shan ◽  
Roland Bürgmann ◽  
Wenyu Gong ◽  
...  

SUMMARY We investigate the coseismic and post-seismic deformation due to the 6 February 2018 Mw 6.4 Hualien earthquake to gain improved insights into the fault geometries and complex regional tectonics in this structural transition zone. We generate coseismic deformation fields using ascending and descending Sentinel-1A/B InSAR data and GPS data. Analysis of the aftershocks and InSAR measurements reveal complex multifault rupture during this event. We compare two fault model joint inversions of SAR, GPS and teleseismic body waves data to illuminate the involved seismogenic faults, coseismic slip distributions and rupture processes. Our preferred fault model suggests that both well-known active faults, the dominantly left-lateral Milun and Lingding faults, and previously unrecognized oblique-reverse west-dipping and north-dipping detachment faults, ruptured during this event. The maximum slip of ∼1.6 m occurred on the Milun fault at a depth of ∼2–5 km. We compute post-seismic displacement time series using the persistent scatterer method. The post-seismic range-change fields reveal large surface displacements mainly in the near-field of the Milun fault. Kinematic inversions constrained by cumulative InSAR displacements along two tracks indicate that the afterslip occurred on the Milun and Lingding faults and the west-dipping fault just to the east. The maximum cumulative afterslip of 0.4–0.6 m occurred along the Milun fault within ∼7 months of the main shock. The main shock-induced static Coulomb stress changes may have played an important role in driving the afterslip adjacent to coseismic high-slip zones on the Milun, Lingding and west-dipping faults.


Author(s):  
Seyyed Hamid Reza Hosseini ◽  
Hiwa Khaledi ◽  
Mohsen Reza Soltani

Gas turbine fault identification has been used worldwide in many aero and land engines. Model based techniques have improved isolation of faults in components and stages’ fault trend monitoring. In this paper a powerful nonlinear fault identification system is developed in order to predict the location and trend of faults in two major components: compressor and turbine. For this purpose Siemens V94.2 gas turbine engine is modeled one dimensionally. The compressor is simulated using stage stacking technique, while a stage by stage blade cooling model has been used in simulation of the turbine. New fault model has been used for turbine, in which a degradation distribution has been considered for turbine stages’ performance. In order to validate the identification system with a real case, a combined fault model (a combination of existing faults models) for compressor is used. Also the first stage of the turbine is degraded alone while keeping the other stages healthy. The target was to identify the faulty stages not faulty components. The imposed faults are one of the most common faults in a gas turbine engine and the problem is one of the most difficult cases. Results show that the fault diagnostic system could isolate faults between compressor and turbine. It also predicts the location of faulty stages of each component. The most interesting result is that the fault is predicted only in the first stage (faulty stage) of the turbine while other stages are identified as healthy. Also combined fault of compressor is well identified. However, the magnitude of degradation could not be well predicted but, using more detailed models as well as better data from gas turbine exhaust temperature, will enhance diagnostic results.


Sign in / Sign up

Export Citation Format

Share Document