scholarly journals Nuclear Structure Investigations of some Medium-Weight Isotopes

2021 ◽  
Author(s):  
◽  
Gavin Wallace

<p>This thesis describes the methods and results of investigations made to determine the decay schemes of three short-lived isotopes 112Ag, 114Ag and 116Ag. A total of 76 gamma-rays was observed with a Ge(Li) detector in the gamma-radiation which follows the Beta-decay of 112Ag to levels of 112Cd. gamma- gamma coincidence and angular correlation measurements were made with Ge(Li)-NaI(T1) and NaI(T1)-NaI(T1) systems. A decay scheme consistent with the present data is proposed. Cross sections for the reactions 112Cd(n,p)112Ag and 115In(n, alpha)112Ag were measured, and the half-life of the 112Ag decay was found to be 3.14 plus-minus 0.01 hr. The decay scheme of 114Ag was studied with Ge(Li) gamma-ray detectors and plastic Beta-ray detectors. 9 of the 11 gamma-rays observed in the decay were incorporated into 114Cd level structure previously determined by conversion electron measurements on the 113Cd(n,gamma)114Cd reaction. The endpoint energy of the Beta-decay was determined as 4.90 plus-minus 0.26 MeV; no branching was evident in the Beta-spectrum. A decay scheme is proposed for which the Beta-branching was deduced from the measured gamma-ray yield and a calculated cross section value for the 114Cd(n,p)114Ag reaction. The 114Ag half-life was determined as 4.52 plus-minus 0.03 sec; a search for a previously reported isomeric state of 114Ag was unsuccessful. Ge(Li) and NaI(T1) gamma-ray detectors were used to study the direct and coincidence spectra that result from the decay of 116Ag, the half-life of which was found to be 2.50 plus-minus 0.02 min. 53 gamma-rays were observed from this decay. The Beta-branching to the 17 excited states of 116Cd in the proposed decay scheme was derived from the measured gamma-ray yield and a calculated cross section value for the 116Cd(n,p)Ag reaction. Spin and parity assignments for ihe energy levels of 116Cd are made. An investigation of the applicability of two collective models to nuclear structure typical of the Cd nuclei studied demonstrated that one of the models was misleading when applied to vibrational nuclei. A potential function was developed in the other model to extend the investigation to include a study of the transition between extremes of collective motion. This was used to examine the correspondence between nuclear level schemes representative of rotational and vibrational excitations.</p>

2021 ◽  
Author(s):  
◽  
Gavin Wallace

<p>This thesis describes the methods and results of investigations made to determine the decay schemes of three short-lived isotopes 112Ag, 114Ag and 116Ag. A total of 76 gamma-rays was observed with a Ge(Li) detector in the gamma-radiation which follows the Beta-decay of 112Ag to levels of 112Cd. gamma- gamma coincidence and angular correlation measurements were made with Ge(Li)-NaI(T1) and NaI(T1)-NaI(T1) systems. A decay scheme consistent with the present data is proposed. Cross sections for the reactions 112Cd(n,p)112Ag and 115In(n, alpha)112Ag were measured, and the half-life of the 112Ag decay was found to be 3.14 plus-minus 0.01 hr. The decay scheme of 114Ag was studied with Ge(Li) gamma-ray detectors and plastic Beta-ray detectors. 9 of the 11 gamma-rays observed in the decay were incorporated into 114Cd level structure previously determined by conversion electron measurements on the 113Cd(n,gamma)114Cd reaction. The endpoint energy of the Beta-decay was determined as 4.90 plus-minus 0.26 MeV; no branching was evident in the Beta-spectrum. A decay scheme is proposed for which the Beta-branching was deduced from the measured gamma-ray yield and a calculated cross section value for the 114Cd(n,p)114Ag reaction. The 114Ag half-life was determined as 4.52 plus-minus 0.03 sec; a search for a previously reported isomeric state of 114Ag was unsuccessful. Ge(Li) and NaI(T1) gamma-ray detectors were used to study the direct and coincidence spectra that result from the decay of 116Ag, the half-life of which was found to be 2.50 plus-minus 0.02 min. 53 gamma-rays were observed from this decay. The Beta-branching to the 17 excited states of 116Cd in the proposed decay scheme was derived from the measured gamma-ray yield and a calculated cross section value for the 116Cd(n,p)Ag reaction. Spin and parity assignments for ihe energy levels of 116Cd are made. An investigation of the applicability of two collective models to nuclear structure typical of the Cd nuclei studied demonstrated that one of the models was misleading when applied to vibrational nuclei. A potential function was developed in the other model to extend the investigation to include a study of the transition between extremes of collective motion. This was used to examine the correspondence between nuclear level schemes representative of rotational and vibrational excitations.</p>


1969 ◽  
Vol 47 (4) ◽  
pp. 419-427 ◽  
Author(s):  
H. Bakhru ◽  
R. I. Morse ◽  
I. L. Preiss

The reaction 14N + 11B forming a silver compound nucleus and the direct interaction of 107Ag + 14N were utilized to produce the isotope 103Ag. In both instances the 103Ag results from the subsequent evaporation of nucleons from either the Ag compound nucleus or from the 105Ag* reaction intermediate in the case of the direct process. The decay of this isotope was studied using Ge(Li) detectors as well as with standard scintillation counters. The beta- and gamma-ray measurements confirm three beta groups of maximum energies 1.31 ± 0.05 MeV (60%), 1.03 ± 0.05 (30%), and 0.500 ± 0.1 MeV (10%) and gamma rays of energies 0.118, 0.148, 0.235, 0.268, 0.420, 0.540, 0.555, 0.585, 0.655, 0.740, 1.002, 1.1, 1.14, 1.27, 1.36, and 1.56 MeV all decaying with a half-life 1.1 h. Coincidence studies show that the 0.118 MeV gamma ray is in coincidence with 0.148, 0.511, 0.555, 0.740, 1.0, and 1.1 MeV gamma rays; the 0.148 MeV gamma ray with the 0.118, 0.511, 0.555, 0.740, 1.0, and 1.1 MeV gamma rays; the 0.235 MeV gamma ray with the 0.420, 0.511, 0.585, 0.740, 1.04, and 1.13 MeV gamma rays; the 0.540 MeV gamma ray with the 0.511 and 0.820 MeV gamma rays; and the 0.820 MeV gamma ray with the 0.511 and 0.740 MeV gamma rays only. Two beta groups of maximum energies 1.03 and 0.5 MeV are observed to be in coincidence with the 0.148 and 0.268 MeV transitions and with the 0.555 and 0.820 MeV gamma rays as a gate, only the beta group of energy 0.5 ± 0.1 MeV appears. Based on the above observation, a decay scheme of 103Ag is proposed and the results are discussed. The half-life of 118 keV level is measured by delayed coincidence and found to be (1.9 ± 0.4) × 10−9 s indicating an M1 multipolarity for this transition. The mass difference between the ground state of 103Ag and 103Pd is found to be 2.32 MeV.


1974 ◽  
Vol 52 (5) ◽  
pp. 406-419 ◽  
Author(s):  
J. R. Johnson ◽  
K. C. Mann

The gamma rays, beta rays, and conversion electrons emitted in the beta decay of 124Sb → 124Te have been observed using Ge(Li) and Si(Li) detectors both singly and in coincidence. The measured energies and intensities of the different transitions involved in this decay together with the coincidence results have allowed us to construct the decay scheme. The spin of most of the states and the parity of all of the states of 124Te populated in this decay have been deduced, some of them for the first time, and others as confirmations of previous assignments. We have also been able to assign collective parameters to many of these states, in terms of the vibrational model of nuclei, from the reduced branching ratios calculated from the gamma-ray intensities.


Author(s):  
Roger H. Stuewer

Serious contradictions to the existence of electrons in nuclei impinged in one way or another on the theory of beta decay and became acute when Charles Ellis and William Wooster proved, in an experimental tour de force in 1927, that beta particles are emitted from a radioactive nucleus with a continuous distribution of energies. Bohr concluded that energy is not conserved in the nucleus, an idea that Wolfgang Pauli vigorously opposed. Another puzzle arose in alpha-particle experiments. Walther Bothe and his co-workers used his coincidence method in 1928–30 and concluded that energetic gamma rays are produced when polonium alpha particles bombard beryllium and other light nuclei. That stimulated Frédéric Joliot and Irène Curie to carry out related experiments. These experimental results were thoroughly discussed at a conference that Enrico Fermi organized in Rome in October 1931, whose proceedings included the first publication of Pauli’s neutrino hypothesis.


1960 ◽  
Vol 38 (12) ◽  
pp. 1577-1585 ◽  
Author(s):  
Agda Artna ◽  
Margaret E. Law

The 52.8-hour activity of Pm149 has been investigated using a high resolution beta spectrometer, a lens type coincidence spectrometer, and a scintillation spectrometer in conjunction with a multichannel analyzer. The beta spectrum was found to consist of two groups with maximum energies of 1.072 ± 0.002 Mev and 0.786 ± 0.004 Mev, and intensities of 97.1 ± 0.4% and 2.9 ± 0.4% respectively. A gamma ray of energy 285.7 ± 0.3 kev was found to be in coincidence with the 0.786-Mev beta group. No other gamma rays with intensities greater than 0.1% were found. The K conversion coefficient for the 286-kev transition was measured to be 0.075 ± 0.008. This together with the values of 6.5 ± 0.7 and 4 ± 1 obtained for the K/L and L/M conversion ratios respectively indicate that this transition is M1 in character with less than 10% E2 admixture.


2019 ◽  
Vol 97 (11) ◽  
pp. 1206-1209
Author(s):  
Ezgi Tantoğlu ◽  
Nalan Özkan ◽  
R. Taygun Güray

There are 35 proton-rich isotopes between 74Se and 196Hg that cannot be synthesized through neutron captures and β− decays (s- and r-processes). A third process is therefore required for the production of these nuclei, the so-called p-process. The abundance and the origin of the p-nuclei are still not fully understood even though significant experimental and theoretical efforts in astrophysical modeling have been expended in the last two decades. The experimental studies with the activation method to measure cross sections of the relevant reactions have some limitations: the reaction product must be radioactive, should have an appropriate half-life, and its decay should be followed by proper γ-radiations. If the cross section cannot be calculated with the radiation followed by the first beta decay of the product, it can be measured using the second beta decay as an alternative method. In this study, the method and candidate reactions for the cross-section measurements via the second beta decay of the reaction product using the activation method are discussed.


1985 ◽  
Vol 25 (1) ◽  
pp. 265
Author(s):  
Sami O. Ajam ◽  
V.E. Rahal

The Thermal Multigate Decay (TMD) logging system utilizes a pulsed 14 Mev generator and two gamma ray detectors to obtain measurements of the capture cross sections of downhole formations. The composite decay curve from both formation and borehole capture gamma rays is detected, and is separated into the two individual components : sigma formation and sigma borehole. The resulting sigma formation measurement is only minimally affected by borehole conditions, especially in cased wells.In addition to sigma formation and sigma borehole, the TMD system generates a dual-spaced porosity ratio and several other parameters which provide information on log quality, borehole parameters, and tool stability. These features can be used to assist the log analyst in understanding the down- hole borehole environment as well as formation characteristics. Under appropriate conditions, the TMD log can also provide production logging information relating to fluid movement in or near the wellbore.The paper briefly reviews the TMD logging system, after which it concentrates on log examples in unusual borehole conditions : logs run across intervals where borehole conditions change; logs run in air filled boreholes; logs run in badly washed out boreholes; logs run through stuck drill pipe/ collars; logs run in flowing wells. The supplemental TMD curves in these situations identify the presence of gravel packs and packers, changes in borehole fluid salinity, possible communication between zones, and water and oil producing perforations. Gas in the borehole can also be clearly differentiated from gas in the formation.


1993 ◽  
Vol 302 ◽  
Author(s):  
L.S. Darken ◽  
C. E. Cox

ABSTRACTHigh-purity germanium (HPGe) for gamma-ray spectroscopy is a mature technology that continues to evolve. Detector size is continually increasing, allowing efficient detection of higher energy gamma rays and improving the count rate and minimum detectable activity for lower energy gamma rays. For low-energy X rays, entrance window thicknesses have been reduced to where they are comparable to those in Si(Li) detectors. While some limits to HPGe technology are set by intrinsic properties, the frontiers have historically been determined by the level of control over extrinsic properties. The point defects responsible for hole trapping are considered in terms of the “standard level” model for hole capture. This model originates in the observation that the magnitude and temperature dependence of the cross section for hole capture at many acceptors in germanium is exactly that obtained if all incident s-wave holes were captured. That is, the capture rate is apparently limited by the arrival rate of holes that can make an angular-momentum-conserving transition to a s ground state. This model can also be generalized to other materials, where it may serve as an upper limit for direct capture into the ground state for either electrons or holes. The capture cross section for standard levels σS.L. is given bywhere g is the degeneracy of the ground state of the center after capture, divided by the degeneracy before capture. Mc is the number of equivalent extrema in the band structure for the carrier being captured, mo is the electronic mass, m* is the effective mass, and T is the temperature in degrees Kelvin.


1970 ◽  
Vol 48 (6) ◽  
pp. 753-758 ◽  
Author(s):  
H. Lycklama ◽  
T. J. Kennett

The beta decay of 2.8 h 88Kr has been investigated using a high-resolution and good efficiency 40 cm3 coaxial Ge(Li) counter. A total of 40 gamma rays were detected and determined to belong to the beta decay of 88Kr. All but one of these were placed in a consistent decay scheme. As a result it was possible to give a plausible interpretation to the level structure of 88Rb.


1981 ◽  
Vol 59 (1) ◽  
pp. 93-108 ◽  
Author(s):  
T. J. Kennett ◽  
M. A. Islam ◽  
W. V. Prestwich

A detailed study of the neutron-capture gamma-ray spectrum for chlorine, above an energy of 1.6 MeV, has revealed a total of 234 transitions with intensity greater than 0.04%. Consistency tests indicate that the average energy uncertainty for the entire set of gamma rays is 0.1 keV. Data reduction was accomplished by invoking spectral deconvolution techniques with the result that many previously reported transitions were found to be multiplets. A decay scheme was derived by making use of both these new findings and the high energy precision attained for the transition energies. The proposed decay scheme accounts for more than 98% of the observed intensity and the energy of the levels included were found to have an average uncertainty of 0.08 keV. Based upon an error-free 15N neutron separation energy of 10 833.30 keV, the Q values for 35Cl(n,γ)36Cl and 37Cl(n,γ)38Cl were found to be 8579.82 (2) and 6107.85 (10) keV, respectively.


Sign in / Sign up

Export Citation Format

Share Document