beta spectrum
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 9)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Gavin Wallace

<p>This thesis describes the methods and results of investigations made to determine the decay schemes of three short-lived isotopes 112Ag, 114Ag and 116Ag. A total of 76 gamma-rays was observed with a Ge(Li) detector in the gamma-radiation which follows the Beta-decay of 112Ag to levels of 112Cd. gamma- gamma coincidence and angular correlation measurements were made with Ge(Li)-NaI(T1) and NaI(T1)-NaI(T1) systems. A decay scheme consistent with the present data is proposed. Cross sections for the reactions 112Cd(n,p)112Ag and 115In(n, alpha)112Ag were measured, and the half-life of the 112Ag decay was found to be 3.14 plus-minus 0.01 hr. The decay scheme of 114Ag was studied with Ge(Li) gamma-ray detectors and plastic Beta-ray detectors. 9 of the 11 gamma-rays observed in the decay were incorporated into 114Cd level structure previously determined by conversion electron measurements on the 113Cd(n,gamma)114Cd reaction. The endpoint energy of the Beta-decay was determined as 4.90 plus-minus 0.26 MeV; no branching was evident in the Beta-spectrum. A decay scheme is proposed for which the Beta-branching was deduced from the measured gamma-ray yield and a calculated cross section value for the 114Cd(n,p)114Ag reaction. The 114Ag half-life was determined as 4.52 plus-minus 0.03 sec; a search for a previously reported isomeric state of 114Ag was unsuccessful. Ge(Li) and NaI(T1) gamma-ray detectors were used to study the direct and coincidence spectra that result from the decay of 116Ag, the half-life of which was found to be 2.50 plus-minus 0.02 min. 53 gamma-rays were observed from this decay. The Beta-branching to the 17 excited states of 116Cd in the proposed decay scheme was derived from the measured gamma-ray yield and a calculated cross section value for the 116Cd(n,p)Ag reaction. Spin and parity assignments for ihe energy levels of 116Cd are made. An investigation of the applicability of two collective models to nuclear structure typical of the Cd nuclei studied demonstrated that one of the models was misleading when applied to vibrational nuclei. A potential function was developed in the other model to extend the investigation to include a study of the transition between extremes of collective motion. This was used to examine the correspondence between nuclear level schemes representative of rotational and vibrational excitations.</p>


2021 ◽  
Author(s):  
◽  
Gavin Wallace

<p>This thesis describes the methods and results of investigations made to determine the decay schemes of three short-lived isotopes 112Ag, 114Ag and 116Ag. A total of 76 gamma-rays was observed with a Ge(Li) detector in the gamma-radiation which follows the Beta-decay of 112Ag to levels of 112Cd. gamma- gamma coincidence and angular correlation measurements were made with Ge(Li)-NaI(T1) and NaI(T1)-NaI(T1) systems. A decay scheme consistent with the present data is proposed. Cross sections for the reactions 112Cd(n,p)112Ag and 115In(n, alpha)112Ag were measured, and the half-life of the 112Ag decay was found to be 3.14 plus-minus 0.01 hr. The decay scheme of 114Ag was studied with Ge(Li) gamma-ray detectors and plastic Beta-ray detectors. 9 of the 11 gamma-rays observed in the decay were incorporated into 114Cd level structure previously determined by conversion electron measurements on the 113Cd(n,gamma)114Cd reaction. The endpoint energy of the Beta-decay was determined as 4.90 plus-minus 0.26 MeV; no branching was evident in the Beta-spectrum. A decay scheme is proposed for which the Beta-branching was deduced from the measured gamma-ray yield and a calculated cross section value for the 114Cd(n,p)114Ag reaction. The 114Ag half-life was determined as 4.52 plus-minus 0.03 sec; a search for a previously reported isomeric state of 114Ag was unsuccessful. Ge(Li) and NaI(T1) gamma-ray detectors were used to study the direct and coincidence spectra that result from the decay of 116Ag, the half-life of which was found to be 2.50 plus-minus 0.02 min. 53 gamma-rays were observed from this decay. The Beta-branching to the 17 excited states of 116Cd in the proposed decay scheme was derived from the measured gamma-ray yield and a calculated cross section value for the 116Cd(n,p)Ag reaction. Spin and parity assignments for ihe energy levels of 116Cd are made. An investigation of the applicability of two collective models to nuclear structure typical of the Cd nuclei studied demonstrated that one of the models was misleading when applied to vibrational nuclei. A potential function was developed in the other model to extend the investigation to include a study of the transition between extremes of collective motion. This was used to examine the correspondence between nuclear level schemes representative of rotational and vibrational excitations.</p>


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5732
Author(s):  
Graeme Turkington ◽  
Kelum A. A. Gamage ◽  
James Graham

The in-situ characterisation of strontium-90 contamination of groundwater at nuclear decommissioning sites would represent a novel and cost-saving technology for the nuclear industry. However, beta particles are emitted over a continuous spectrum and it is difficult identify radionuclides due to the overlap of their spectra and the lack of characteristic features. This can be resolved by using predictive modelling to perform a maximum-likelihood estimation of the radionuclides present in a beta spectrum obtained with a semiconductor detector. This is achieved using a linear least squares linear regression and relating experimental data with simulated detector response data. In this case, by simulating a groundwater borehole scenario and the deployment of a cadmium telluride detector within it, it is demonstrated that it is possible to identify the presence of 90Sr, 90Y, 137Cs and 235U decay. It is determined that the optimal thickness of the CdTe detector for this technique is in the range of 0.1 to 1 mm. The influence of suspended solids in the groundwater is also investigated. The average and maximum concentrations of suspended particles found at Sellafield do not significantly deteriorate the results. It is found that applying the linear regression over two energy windows improves the estimate of 90Sr activity in a mixed groundwater source. These results provide validation for the ability of in-situ detectors to determine the activity of 90Sr in groundwater in a timely and cost-effective manner.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3787
Author(s):  
Markus Zehringer ◽  
Franziska Kammerer ◽  
Anja Pregler

In this paper, experiences of the last 20 years with the PERALS-technique are described. PERALS stands for photo electron-rejecting alpha liquid scintillation. This liquid scintillation technique was developed by Jack McDowell in the 1970s and is a powerful technique for the analyses of many natural alpha nuclides and also the beta nuclide 90Sr. The principle is based on a selective extraction of the radionuclide from the water phase by means of a complexing or ion pair reagent. The extractant contains also a cocktail suitable for scintillation counting. Therefore, the extract can be analyzed directly after the extraction step. After removing quenchers, such as oxygen, and the proper setting of a pulse shape discriminator, alpha pulses can be counted with a photomultiplier. This paper describes the development of robust analysis schemes for the determination of traces of polonium, thorium, uranium and other actinides in water samples (groundwater, rain water, river water, drinking water, mineral water, sea water). For radon and radium, the enrichment in the extract is poor. Therefore, PERALS methods are not suitable for trace analyses of these analytes. In addition, the extraction of the beta-emitter 90Sr with a PERALS cocktail is discussed, even though its beta spectrum is not analyzed with a PERALS counter. Results from the survey of drinking water and mineral water in Switzerland are presented for every radio element.


Author(s):  
V.G. Fedorkov

The explanation is given of the feasibility of using of a relatively unknown beta-albedo-absorption (BAA) technique, which was the research topic of the PHD thesis of the author, for the creation of a modern, unparalleled anywhere in the world, non-destructive testing (NDT) system to be used for the production of nanomaterials with main dimension parameters (thickness, surface density, and coating) in the nanorange, i.e., practically from zero to several hundreds of nanometers. The importance of the problem is determined by the present time intense development both in Russia and all over the world of the production of nanomaterials of different types in the practical absence of the development and production of NDT devices. Analytical expressions are given for the calculation of the main quantitative characteristics of BAA measurement geometry, namely, the radial density distribution and the integral electron backscattering coefficient at the variables of the parameters of the reflecting gas or air medium. The principle of developing the optimum measurement geometry, little dependent on changing parameters of the reflecting medium and minimizing measurement errors for BAA method, is described. The design of the developed detectors is shown. The following recommendations are given on additional experimental studies of the BAA method aiming to provide a possibility of parameter measurement in the nanorange: using the industrial beta sources with a lower value of the maximum beta spectrum energy; increasing the activity of beta sources or measurement time; using special filters for degradation of the beta source emission spectrum; and using beta radiation detectors with the largest possible measurement area.


2019 ◽  
Vol 154 ◽  
pp. 108897 ◽  
Author(s):  
A. Singh ◽  
X. Mougeot ◽  
B. Sabot ◽  
D. Lacour ◽  
A. Nourreddine

2018 ◽  
Vol 134 ◽  
pp. 212-218 ◽  
Author(s):  
Karsten Kossert ◽  
Justyna Marganiec-Gałązka ◽  
Xavier Mougeot ◽  
Ole J. Nähle

Sign in / Sign up

Export Citation Format

Share Document